

1) <u>Data</u>: sparse measurements from probe vehicles 3) <u>Delay</u>: Analytical derivations

Data collected from a fleet of **500 vehicles**, reporting their location every minute (San Francisco, CA).

Black dots: Cumulative measurements received between 12am and 7am, on March 29th, 2010. <u>Red circles</u>: Location of the probe vehicles

at 7am on that day.

Challenges of arterial traffic estimation from sparse probe measurements: • Dynamics driven by the presence of *signals* with *unknown* parameters • Trade-off between the amount of data available in real-time and the information that can be reconstructed

- Variations in the travel time under similar conditions:
- The delay depends on the entrance time on the link
- Differences in driving behavior influence the travel time **Our approach:**

→ Parametric probability distribution of travel times which represent the dynamics over several cycles.

→ The parameters represent traffic characteristics which are learned from historical and real-time data.

2) <u>Dynamics</u>: horizontal queuing model

time Model:

•Conservation of the vehicle and triangular fundamental diagram

- Uniform arrivals
- Periodic dynamics (period is duration of cycle: **C**)

Parameters:

- *Traffic signal*: red time R and cycle time C,
- *Driving behavior*: free flow pace pf with distribution p
- Saturation queue length: distance traveled between successive stops in
- the congested regime
- Queue length: distance to the downstream intersection of the last vehicle which stops in the queue.

Probability distributions of travel times on arterial networks: a traffic flow and horizontal queuing theory approach A. Hofleitner, R. Herring and A. Bayen

Delay at location x: of the queue. (among the vehicles entering in a cycle) **Probability distribution of delay:**

In the congested regime: different cases depending on the relative location of $_1$ and x_2 with respect to the queue length and remaining queue length

4) **Probability distribution of travel times**

Travel time = Delay + Free flow travel time • Free flow travel time: proportional to the distance traveled and free flow pace Scaling of the pdf of free flow pace

• Sum of independent random variables	Г 0.3	Partial line Pdf of delay
Convolution product	0.25	
	0.2	
• Linearity of the	b 0.15	
convolution	0.1	
→ Compute	0.05	
the pdf of travel times	0	0 10 2 Delay (s)
for each type of delay	$h^s(\delta_x)$	$(x_1, x_2) \xrightarrow{\text{Pdf of delays}} $
(e.g. stopping vs. non	0.3	Componer
stopping vehicles)	0.0	
Entire link:	bg 0.2-	
Max. delay: Red time	0.1	
Min. delay: Zero		0 10 20 Delay (s)

5) <u>Numerical experiment</u>

- 2 distinct loops (1.9 and 2.3 miles) •Trajectory measurements (GPS device)

Numerical analysis:

sparse probe measurements • Learning on the training set:

• Validation on the remaining data

(i.e. congestion) across the network.

Field test experiment (San Francisco, CA): • 20 drivers, 3 hours of test on 3 consecutive days

- Down-sampling of trajectories to simulate
- *maximum likelihood* estimation of the distribution parameters

