Probability distributions of travel times on arterial networks: a traffic flow and horizontal queuing theory approach

A. Hofleitner, R. Herring and A. Bayen

1) Data: sparse measurements from probe vehicles

Data collected from a fleet of $\mathbf{5 0 0}$ vehicles reporting their location every minute (San Francisco, CA).
Black dots: Cumulative measurements received between 12am and 7am, on March 29th, 2010.
Red circles: Location of the probe vehicles at 7am on that day.
Challenges of arterial traffic estimation from sparse probe measurements: - Dynamics driven by the presence of signals with unknown parameters - Trade-off between the amount of data available in real-time and the information that can be reconstructed

- Variations in the travel time under similar conditions:
- The delay depends on the entrance time on the link
- Differences in driving behavior influence the travel time

Our approach

\rightarrow Parametric probability distribution of travel times which represent the dynamics over several cycles.
\rightarrow The parameters represent traffic characteristics which are learned from historical and real-time data

2) Dynamics: horizontal queuing model

Undersaturated regime: vehicles stop at most once

Congested regime: vehicles stop at least once
-Conservation of the vehicle and
triangular fundamental diagram

- Uniform arrivals
- Periodic dynamics (period is
duration of cycle: \mathbf{C})

Parameters:

- Traffic signal: red time R and cycle time C, - Driving behavior: free flow pace pf with distribution p
- Saturation queue length: distance traveled between successive stops in the congested regime
- Queue length: distance to the downstream intersection of the last vehicle which stops in the queue.

3) Delay: Analytical derivations

Delay at location x :

- Maximum at $\mathrm{x}=0$ (red time), null at the end
of the queue.
- Decreases linearly with the position x in the queue

$$
\delta^{u}(x)=R\left(1-\frac{\min \left(x, l_{\max }\right)}{l_{\max }}\right)
$$

Proportion of stopping vehicles between x_{1} and x_{2} (among the vehicles entering in a cycle)

$$
\eta_{x_{1}, x_{2}}^{u}=\frac{\min \left(x_{1}, l_{\max }\right)-\min \left(x_{2}, l_{\max }\right)}{l_{\max }}\left(\frac{R}{C}+\left(1-\frac{R}{C}\right) \frac{l_{\max }}{l_{\max }^{s}}\right)
$$

Probability distribution of delay:

In the congested regime: different cases depending on the relative location of x_{1} and x_{2} with respect to the queue length and remaining queue length

4) Probability distribution of travel times

Travel time = Delay + Free flow travel time

- Free flow travel time: proportional to the distance traveled and free flow pace

Scaling of the pdf of free flow pace

$$
p_{f} \sim \varphi^{p}\left(p_{f}\right) \Rightarrow \varphi_{x_{1}, x_{2}}^{y}\left(y_{f ; x_{1}, x_{2}}\right)=\varphi^{p}\left(\frac{y_{f ; x_{1}, x_{2}}}{x_{1}-x_{2}}\right) \frac{1}{x_{1}-x_{2}}
$$

- Sum of independent random variables \rightarrow Convolution product
- Linearity of the convolution \rightarrow Compute the pdf of travel times for each type of delay (e.g. stopping vs. non stopping vehicles)

Entire link:
Max. delay: Red time

Min. delay: Zero

5) Numerical experiment

Field test experiment (San Francisco, CA):

- 20 drivers, 3 hours of test on 3 consecutive days
- 2 distinct loops (1.9 and 2.3 miles)
-Trajectory measurements (GPS device)
Numerical analysis:
- Down-sampling of trajectories to simulate
sparse probe measurements
- Learning on the training set:
maximum likelihood estimation of the distribution parameters
- Validation on the remaining data

6) Analysis of the results and current directions Numerical analysis of the results

Test the hypothesis that travel times are distributed according to different classes of distributions. The traffic distribution fits the validation data best, in particular when little data is available.

Current directions:
Model the conservation of vehicle at junction to derive
a model of the stochastic evolution of queue length
(i.e. congestion) across the network.

