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Abstract

This article introduces the new component of Mobile Millennium dedicated to ar-
terial traffic. Mobile Millennium is a pilot system for collecting, processing and broad-
casting real-time traffic conditions through the use of GPS equipped smartphones. Two
algorithms that use data from GPS equipped smartphones to estimate arterial traffic
conditions are presented, analyzed and compared. The algorithms are based on Lo-
gistic Regression and Spatio-Temporal Auto Regressive Moving Average (STARMA),
respectively. Each algorithm contains a learning component, which produces estimates
of spatio-temporal parameters for describing interactions between the states of arterial
links in the network. Additionally, each algorithm contains an inference component,
which gives the procedure for processing real-time data into short-term forecasts us-
ing these parameters. The algorithms are tested with simulation data obtained from
Paramics software, and from a field test in New York. Both methods provide encour-
aging results in forecasting arterial traffic conditions using sparse GPS data.
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1 Introduction1

In the United States and numerous other parts of the world, traffic is an unavoidable2

part of economic activity. The 2007 Urban Mobility Report [3] states that traffic3

congestion causes 4.2 billion hours of extra travel in the United States every year,4

which accounts for 2.9 billion extra gallons of fuel, which cost taxpayers an additional5

$78 billion.6

Numerous measures can be taken to address problems due to traffic congestion.7

An essential step is to create the ability to forecast traffic conditions with significant8

accuracy and reliability. Numerous challenges stand in the way of this type of effort.9

A significant portion of the transportation network has little or no dedicated infras-10

tructure for collecting traffic data. Areas equipped with this infrastructure generally11

only cover highways and have high installation and maintenance costs in addition to12

providing data of variable reliability. An alternative to using dedicated communication13

infrastructure is to leverage an existing system such as the cellular phone network.14

The Mobile Millennium project [2] was conceived as a response to these challenges, to15

explore the capability of using cellular phones to provide traffic data.16

The mobile internet is the underlying technology enabling the existence of the17

Mobile Millennium system. User-generated content (in the present case, smartphone18

measured traffic data) is sent to a central system, which provides information back19

to the cell phone owner for personal use. This “web 2.0” application framework is20

commonly referred to as “participatory sensing,” which refers to the ad hoc process21

of voluntarily providing sensing data to a system. In general, there are a number22

of challenges to overcome with any nomadic sensing technology, including unknown23

location of upcoming measurements, sparsity of the data, and unpredictability of the24

frequency of data collection.25

The Mobile Millennium system was officially launched on November 10, 2008 when26

the team released a software client for GPS enabled smartphones to the public, avail-27

able for download (see figure 1(a)). Traffic conditions are broadcast back to drivers’28

mobile phones, enabling commuters to make more informed route and trip decisions.29

Additionally, traffic data can be analyzed in the Mobile Millennium live traffic visual-30

izer, shown in figure 1(b), which is currently on display in the CITRIS [1] Tech Museum31

on the UC Berkeley campus. The deployment area of the pilot system is focused on32

commuters in Northern California, including the San Francisco Bay Area and Sacra-33

mento. The project is a follow up to the Mobile Century experiment, in which 165 UC34

Berkeley graduate students were hired to drive a 10-mile stretch of I880 in California35

for a day, demonstrating the feasibility of a real-time highway traffic estimation service36

using only GPS enabled devices [29].37

This article focuses on estimating and forecasting arterial traffic conditions using38

only GPS enabled devices using two statistic models. Section 2 reviews previous traffic39

models and examines the need for a new (statistical) approach. Section 3 is a formal40

presentation of the problem with details of the data types and models used. Sections 441

and 5 present the details of the logistic regression and STARMA models, respectively.42

Results are presented on simulation and field experiment data in section 6. Further43

analysis and future directions are presented in the conclusion (section 7).44
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(a) Traffic client (b) Web interface

Figure 1: Mobile Millennium traffic information services. (a) The Mobile Millennium traffic client.
(b) The Mobile Millennium interface for highway and arterial traffic visualization.

2 Challenges and Motivation for the Statistical45

Learning Approach46

The development of traffic theory has led to numerous modeling contributions since47

the pioneering work of Lighthill, Whitham and Richards, [15, 21], which relied on hy-48

drodynamic theory. By nature, arterial traffic has very high variability, which make49

it challenging to use flow models for arterial networks. Studies have typically focused50

on modeling single intersections [22, 28, 4, 23] using dedicated traffic sensors. This51

modeling approach is difficult to adapt to a general traffic information system on a52

dense arterial network because it requires a high density of traffic sensors (which are53

prohibitively expensive at the scale of the arterial network). In particular, one of the54

major challenges of Mobile Millennium is that the system does not have access to flow55

counts. A statistical approach is suitable because sensing every vehicle is impracti-56

cal and because this allows for the incorporation of other information types (such as57

human mobility patterns [10]). The present article article suggests to develop moni-58

toring capabilities for arterial traffic in two directions: (1) using alternate data sources59

such as privacy aware cell phone information; (2) developing new arterial models based60

on statistical learning which overcome some major issues faced by analytical flow or61

queuing-based models. The motivations for these two items are described in the re-62

mainder of this section.63

2.1 Using Cell Phones as Traffic Probes64

Experimental research on cell phone based traffic monitoring [5, 30, 24, 31] has inves-65

tigated the ability to locate the position of users using trilateration- or triangulation-66

based methods. It has shown limited success for estimation of travel times due to the67

position measurement inaccuracy, particulary on short distances and dense networks68

[16, 12]. The complexity of traffic patterns in the arterial networks gives the use of69

GPS-based traffic information enormous growth potential.70
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2.2 Application of Machine Learning to Arterial Traffic71

Machine learning techniques have been used to estimate and produce short term traffic72

predictions for both freeway [8, 27, 7, 6, 17] and arterial networks [26, 28, 14, 19, 25, 9].73

These studies present encouraging results. One of the limitations of these approaches74

for our problem is that they present results for specific traffic variables (in particular75

for flow/density). The present article focuses on estimating and predicting congestion76

states and travel times. Congestion states, also referred to in the literature as Level of77

Service (LoS), represent traffic conditions on the road segment as experienced by the78

network user. They also represent the level of service offered by the network manager.79

They can be interpreted as a discrete representation of traffic states. Traffic states80

(for example travel time) have their own statistical distribution depending on traffic81

conditions.82

In the remainder of this article, we present regression techniques corresponding to83

two different approaches:84

• Logistic Regression model. An example of a neural network used as a clustering85

algorithm between discrete traffic congestion states.86

• Spatio-Temporal Auto-Regressive Moving Average (STARMA) model. An ex-87

ample of a time series model in which the traffic variable studied (travel time)88

depends on the previous values of this variable.89

To our knowledge, logistic regression has not been used in arterial traffic estima-90

tion or prediction. We compare its results to a more widely used model, the STARMA91

model. This comparison is of significant interest for the transportation community92

since it is between a discrete output (congestion states from the clustering of the lo-93

gistic regression) and a continuous output (travel time estimations from the linear94

regression of the STARMA model). Furthermore, the system and results presented95

here are one of the first instantiations of real-time arterial monitoring using machine96

learning with streaming data collected from smartphone. Mobile Millennium is cur-97

rently implemented and operational in all of Northern California [2].98

3 Problem Formulation99

This section formally presents the problem formulation, namely estimating LoS indi-100

cators which are the aggregate travel times and congestion states for an arterial road101

network. First, we introduce our sampling paradigm, the Virtual Trip Line in sec-102

tion 3.1. This leads to the problem of sensing on a graph (section 3.2) and the formal103

definitions of LoS indicators (section 3.3). The problem description of estimating the104

LoS indicators based on STARMA and logistic regression is presented in section 3.4.105

3.1 Virtual Trip Line Sensing Infrastructure106

A GPS-enabled smartphone is capable of recording its GPS location every few seconds.107

Over time, this vehicle trajectory information produces a rich history of the vehicle and108

the velocity field through which it evolves [11]. While this level of detail can be useful109

for traffic estimation, it can be privacy invasive, since the device is ultimately carried110

by a single user. Even if personally identifiable information from the data is replaced111
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with a randomly chosen ID through a process known as pseudo-anonymization, it is112

still possible to re-identify individuals from trajectory data [13].113

Virtual Trip Lines (VTLs) [12] are spatial triggers for phones to collect measure-114

ments and send updates. Each VTL consists of two GPS coordinates which make a115

virtual line drawn across a roadway of interest. Instead of time-based periodic sam-116

pling, VTLs trigger disclosure of speed and location updates by sampling in space,117

creating updates at predefined geographic locations on roadways of interest. Addition-118

ally, the travel time between pairs of VTLs can be extracted and this type of travel119

time data will be considered the primary data source used in this article.120

3.2 Graph Model of the Road Network121

Consider an arterial network with a total of N pairs of VTLs deployed. Each pair has122

a unique identification number i ∈ {1, . . . , N}. The set of all VTL pairs is denoted by123

V = {1, . . . , N}. Each VTL pair has a segment of road in between with a possibility124

of one or more road features such as an intersection (with or without traffic lights),125

pedestrian walkways, stop/slow signs etc. The characteristics of these road features126

can be static (such as presence of a stop sign) or dynamic (such as phase of a signalized127

intersection) with respect to time. The travel time experienced by a vehicle traveling128

through a VTL pair depends on the characteristics of the road features as well as the129

demand-capacity restrictions imposed by the dynamics of traffic flow. We also assume130

that each VTL pair is associated with unidirectional traffic flow. For arterial links131

consisting for bidirectional traffic, we associate a VTL pair corresponding to each flow132

direction.133

We say that the upstream (resp. downstream) VTL for the pair i is the VTL at134

which the traffic enters (resp. leaves) the corresponding stretch of road. For pair i, let135

the upstream and downstream VTLs be denoted by iu and id respectively. Then the136

VTL sensor network can be represented as a directed graph G = (V, E), where V is the137

set of all VTL pair as defined earlier and E is the set of all edges. Two VTL pairs i138

and j form an edge directed from pair i to pair j, denoted eij , if id and ju correspond139

to same VTL. Then i (resp. j) is called the upstream (resp. downstream) node of edge140

eij .141

We define the set of first order neighbors for VTL pair j as142

N 1(j) = {j} ∪ {i ∈ V : eij ∈ E} ∪ {k ∈ V : ejk ∈ E}

which is simply the set of all the upstream and downstream VTL pairs for the pair j143

(in which we include pair j itself).144

We can extend the above definition to define nth (n ≥ 1) order neighbors as:145  N
0(j) = {j}

N n(j) = N n−1(j) ∪
(⋃

l∈Nn−1(j) {i ∈ V : eil ∈ E} ∪ {k ∈ V : elk ∈ E}
) (1)

3.3 Traffic Level of Service Indicators146

We assume that for any VTL pair i ∈ V, the travel time data is available at times147

0 ≤ t1 ≤ t2 ≤ . . .. As an alternative to travel time data, we can also compute the148

pace (travel time divided by the length of road for the VTL pair). We denote the149
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data obtained at time t1 for VTL pair i as Xt1,i. Since the acceptable values of Xt1,i150

generally lie between a minimum and maximum value, we reject data that do not fall151

in this range. For VTL pair i, let us denote this range as [Xi, Xi].152

Since the data obtained is event-based, it cannot be directly used for training sta-153

tistical models that needs regular sampling rates. We aggregate the travel time data154

in t second windows to obtain a time series of observations at times k = 0, t, 2t, . . ..155

Here t is the aggregation interval. Henceforth, we will use k to denote the time interval156

[(k − 1)t, kt). The set of available observations during the time period k for any VTL157

pair i is denoted as Ak,i, that is,158

Ak,i = {Xtm,i | (k − 1)t ≤ tm < kt}.

The penetration rate for VTL pair i during time k, denoted pk,i, is the fraction of159

available observations out of the total number of vehicles Dk,i traveling through pair i160

during time k:161

pk,i =
Ak,i
Dk,i

.

We define the spatial aggregation function for VTL pair i, hi(·) : Ak,i 7→ [Xi, Xi],162

as the function that aggregates the set of observations Ak,i in to an aggregate repre-163

sentative quantity, denoted Zk,i with values in the range [Xi, Xi]. In the remainder164

of this article, Zk,i is an aggregated travel time (seconds). Thus, the aggregate travel165

time for VTL i during interval k is166

Zk,i = hi({Xtm,i | (k − 1)t ≤ tm < kt}).

We define the mode of a VTL pair as the categorical variable indicative of the extent167

of delay experienced in navigating through the VTL pair. For example, a binary mode168

classification can be uncongested or congested. Thus, the mode of a VTL pair can also169

interpreted as a congestion state. Let the mode of VTL pair i during time interval k be170

denoted as Qk,i. In order to convert the total number of observations available at VTL171

i during time interval k into a mode of the VTL pair, we define a congestion indicator172

function gi(·) : Ak,i 7→ {1, . . . ,M} where M is the desired number of modes the VTL173

pairs should be classified to. Thus,174

Qk,i = gi({Xtm,i|(k − 1)t ≤ tm < kt}).

From a statistical modeling perspective, both the aggregate speed or travel time,175

Zk,i, and the congestion state, Qk,i, for i ∈ V and k ∈ {0, 1, . . .} can be considered176

as random processes generated by space-time varying traffic flow phenomena on the177

arterial network. Both Qk,i and Zk,i can be regarded as LoS indicators.178

3.4 Estimating Level of Service Indicators179

If we had data from all the vehicles for all the VTL pairs over the entire time horizon180

of interest, the penetration rate pk,i would satisfy pk,i = 1 for all i ∈ V and k ∈181

{0, 1, . . .}. We could then compute the entire probability distribution of Zk,i and Qk,i.182

However, the challenge of arterial traffic state estimation and forecast is that the typical183

penetration rates are very low. Our focus in this article is to develop reliable estimation184

and forecasting methods for such situations.185
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We now describe the problem formulation for estimation or nowcast1. We typically186

only have data from a small percentage of the total number of vehicles (pk,i ∼ 0.02 −187

0.05). Thus, the choice of the aggregation function hi(·) (resp. the congestion indicator188

function gi(·)) becomes critical to obtain reliable estimates of Zk,i (resp. Qk,i). For189

a given choice of hi(·), the best estimate of the aggregate travel time or speed for190

VTL pair i during interval k is given by the conditional expectation of Zk,i given the191

aggregate travel times up-to (and excluding) the current time interval:192

Ẑk,i = E[hi(Ak,i)|hj(Aj,v), j < k, v ∈ V] = Ehi
[Zk,i|Zj,v, j < k, v ∈ V],

where notation Ehi
[·] is used to indicate the dependence of the expectation on the193

aggregation function hi. We now introduce the following conditional independence194

assumption: Zk,i is conditionally independent of all other data conditioned on the data195

from the past r time intervals for VTL pairs in the set N s(i). Under this assumption,196

we can write197

Ẑk,i ≈ Ehi
[Zk,i|Zj,v, k − r ≤ j < k, v ∈ N s(i)] (2)

Thus, Ẑk,i only depends on data with r temporal dependencies in the past and s198

spatial dependencies from the neighbors. Similarly, for given choices of the aggregation199

function hi(·) and the congestion indicator function gi(·), we can write the conditional200

expectation of Qk,i given all the aggregate travel times up-to (and excluding) the201

current time interval as2
202

Q̂k,i = E[gi(Ak,i)|hj(Aj,v), j < k, v ∈ V]
≈ Ehi,gi

[Qk,i|Zj,v, k − r ≤ j < k, v ∈ N s(i)], (3)

In the statistics terminology, the quantities Zk,i and Qk,i in (2) and (3) are known as203

the response variables; the conditioned variables Zj,v and Qj,v are called the dependent204

variables or covariates. The present article compares the two estimators which we now205

introduce.206

The first estimator is based on expressing (2) as a linear regression problem. For207

a temporal and spatial dependence of orders r and s respectively, we assume a linear208

dependence of response Zk,i on the covariates Zj,v:209

Ẑk,i = β0
i +

∑
v∈N s(i)

 k−1∑
j=k−r

βj,vi Zj,v

 . (4)

In order to make the notation concise, let Zr,sk,i be the r×N s(i) vector of covariates or210

dependent variables obtained by stacking the aggregate travel times Zj,v for k − r ≤211

1Depending on the convention used, this can also be treated as one-step ahead forecast. In this article,
we do not distinguish between one-step forecast and estimation.

2Alternatively, we can also condition Qk,i directly on congestion modes up-to (and excluding) the current
time, that is, Q̂k,i = Egi [Qk,i|Qj,v, k − r ≤ j < k, v ∈ N s(i)]. However, we do not consider this type of
estimator in this article.
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j < k and v ∈ N s(i), βi be the corresponding r×N s(i) + 1 vector of parameters to be212

estimated. Then the equation (4) can be re-written as213

Ẑk,i = β>i Zr,sk,i,

where > stands for the transpose of a vector. As described later in Section 5, instead214

of a simple regression model (4), we consider a STARMA model.215

Our second estimator is based on expressing (3) as a logistic regression problem216

which assumes a linear dependence of the logit or the log-odds ratio of conditional217

expectation Q̂k,i on the response variables. That is, for a temporal and spatial depen-218

dence of orders r and s respectively, we have219

log

(
Q̂k,i

1− Q̂k,i

)
= β>i Zr,sk,i.

We can express this equation as220

Q̂k,i = fβi
(Zr,sk,i) :=

1

1 + exp
(
−β>i Zr,sk,i

) , (5)

where the subscript βi in fβi
(·) encodes the dependence on the βi.221

We detail the implementation of a logistic regression estimator in Section 4 and222

a STARMA-based estimator in Section 5. However, two important points need to223

be mentioned. First, the above formulation can be modified to include the case of224

multiple steps forecast. For example, an m−step forecast at time k for VTL pair i can225

be written as226

Ẑk+m,i = Ehi
[Zk,i|Zj,v, j < k, v ∈ V], (6)

where we consider data up to time k to predict traffic at time k +m.227

Second, we note that for some VTL pairs and time intervals, we might not have228

any available data, that is, Aj,v = ∅ for some j ∈ {k− r, . . . , k} and v ∈ N s(i). In this229

case, one has to employ a technique of estimation with missing data. We will briefly230

touch on the forecast problem for the STARMA model but will address the issue of231

missing data in later work.232

4 Logistic Regression233

We now discuss the estimator based on the logistic model (5) to estimate the congestion234

state Qk,i for a VTL pair i and time interval k. Suppose that Qk,i is binary-valued,235

that is Qk,i = {0, 1} and M = 2. When Qk,i = 1 (resp. Qk,i = 0), we say that the236

VTL pair i during interval k is in the congested mode (resp. uncongested mode). Then237

the estimator Q̂k,i gives the conditional probability of the Qk,i given the dependent238

variables:239

Q̂k,i = Ehi,gi
[Qk,i|Zr,sk,i] = 1 · Phi,gi

[Qk,i = 1|Zr,sk,i] + 0 · Phi,gi
[Qk,i = 0|Zr,sk,i]

= Phi,gi
[Qk,i = 1|Zr,sk,i]
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Now using (5), we can write the conditional probability of Qk,i given the aggregate240

travel time for r temporal and s spatial dependencies as241

Phi,gi
[Qk,i|Zr,sk,i;βi] = [fβi

(Zr,sk,i)]
Qk,i [1− fβi

(Zr,sk,i)]
1−Qk,i

We now assume that for a VTL pair i, the response process {Qk,i} and the covariate242

process {Zr,sk,i} is available for a number of time intervals k = 0, . . . ,K. Introducing the243

conditional independence assumption that the response variable Qk,i is independent of244

all other data given Zr,sk,i. Then the joint conditional probability of {Qk,i} given {Zr,sk,i}245

(also known as the conditional likelihood) can be expressed as246

Phi,gi
[{Qk,i}Kk=0|{Z

r,s
k,i}

K
k=0;βi] =

K∏
k=0

[fβi
(Zr,sk,i)]

Qk,i [1− fβi
(Zr,sk,i)]

1−Qk,i

For a given training data {Qk,i}Kk=0 and {Zr,sk,i}
K
k=0, the best estimate of parameter247

βi is obtained by maximizing the logarithm of the conditional likelihood which we state248

explicitly as follows:249

L(βi; {Qk,i}Kk=0, {Z
r,s
k,i}

K
k=0) =

K∑
k=0

(
Qk,i · β>i Zr,sk,i − log

[
1 + exp (β>i Zr,sk,i)

])
The optimal estimate so obtained and denoted β∗i , is called the maximum likeli-250

hood estimate (MLE). A number of standard iterative methods, all similar to Newton-251

Raphson method, can be used to obtain the MLE β∗i . Examples of such method include252

Fisher scoring method, iterative reweighted least squares etc. Due to space limitations,253

we omit the details of the algorithm and refer the reader to [18].254

Once the parameters are learned, validation can be done on a similar data set as the255

one used to obtain β∗i . Validation is done to assess the ability of the learned model to256

correctly estimate the traffic status (congestion state in this case) on previously unseen257

data.258

5 STARMA259

We now discuss the STARMA model which is a more efficient estimator than the simple260

linear regression model (4). The number of parameters to be estimated for (4), given261

by r× |N s(i)|+ 1 (|A| is the cardinality of A), can increase significantly as the spatial262

dependency s increases. In order to explain the model, we first present the spatio-263

temporal autoregressive (STAR) model and subsequently generalize to a full STARMA264

model.265

Following (1), the set of n order neighbors (0 ≤ n ≤ s) for a VTL pair i can be266

expressed as follows267

N s(i) =
s⋃

n=0

N n(i)\N n−1(i).

Here we adopt the convention that N 0(i)\N−1(i) = {i}. Now, for the linear regression268

model (4), for any temporal order j, (k − r ≤ j < k) and spatial order n, (0 ≤ n ≤ s),269

10



we introduce the assumption that270

For all v ∈ N n(i)\N n−1(i), βj,vi ≡ β
j,n
i , (7)

and the definition of n-th order, spatially-weighted travel time as271

ϕ
(n)
i (Zj) =

∑
l∈Nn(i)\Nn−1(i)w

(n)
i,l Zj,l∑

l∈Nn(i)\Nn−1(i)w
(n)
i,l

, (8)

where Zj = (Zj,1, . . . , Zj,N ) is the vector of aggregate travel times for all the N VTL272

pairs during time interval j and w
(n)
i,l are the pre-defined spatial weights of order n for273

Zj,l.274

Under the assumption (7) and the definition (8), we can now write the STAR model275

of autoregressive (AR) temporal order r and spatial order s as276

Zk,i =
k−1∑
j=k−r

s∑
n=0

βj,ni ϕ
(n)
i (Zj) + εk,i (9)

where εk,i is the normally distributed error term with variance σ2 with the properties277

that E[εk,i] = 0 for all k and i ∈ V; and for all i, j ∈ V278

E[εk,iεk+s,j ] =

{
σ2 if s = 0
0 otherwise.

The number of parameters to be estimated for the STAR model (9), including σ2,279

is r(s+ 1) + 1 which is (typically) much smaller than r×N s(i) + 1 for (4). The STAR280

model can now be generalized to STARMA model of autoregressive temporal order r281

and spatial order s, and moving average (MA) temporal order p and spatial order q282

as3
283

Zk,i =
k−1∑
j=k−r

s∑
n=0

βj,ni ϕ
(n)
i (Zj)−

k−1∑
j=k−p

q∑
n=0

αj,ni ϕ
(n)
i (εj) + εk,i, (10)

where εj = (εj,1, . . . , εj,N )>.284

Here αj,ni are the moving average parameters. The total number of parameters (in-285

cluding σ2) to be estimated for the STARMA model (10), denoted as STARMA(r, s, p, q)286

are r(s+ 1) + p(q + 1) + 1.287

Following [20], we adopt the assumption in this article that that STARMA param-288

eters are same for VTL pairs, that is, αj,n1 = . . . = αj,nN ≡ αj,n and βj,n1 = . . . = βj,nN ≡289

βj,n. Then model (5) can be vectorized for all VTL pairs i ∈ V as290

Zk =
k−1∑
j=k−r

s∑
n=0

βj,nΦ(n)(Zj)−
k−1∑
j=k−p

q∑
n=0

αj,nΦ(n)(εj) + εk. (11)

where Φ(n)(·) = (ϕ(n)
1 (·), . . . , ϕ(n)

N (·))> and εk = (εk,1, . . . , εk,N )>.291

3More generally, the AR spatial order s (resp. the MA spatial order q) can vary with the temporal order
r (resp. p). However, we do not consider this generalization in this article.
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For given training data {Zk}, (k = 0, . . . ,K−1), the best estimate of the parameters292

A := [αj,n]p×(q+1), B := [βj,n]r×(s+1) and σ2 is given by maximizing the conditional293

likelihood expressed as294

P({Zk}K−1
k=0 ;A,B, σ2) = (2π)−

KN
2 |σ2IKN×KN |−

1
2 exp

(
−S(A,B)

2σ2

)
(12)

where IKN×KN is the identity matrix, S(A,B) := (ε0, . . . , εK−1)>(ε0, . . . , εK−1) and295

according to (11), we have296

εk = Zk −
k−1∑
j=k−r

s∑
n=0

βj,nΦ(n)(Zj) +
k−1∑
j=k−p

q∑
n=0

αj,nΦ(n)(εj).

The maximum likelihood estimate parameters, denoted A∗, B∗, are obtained by297

maximizing the logarithm of the conditional likelihood (12), and the corresponding σ∗298

is estimated by299

σ∗ =

√
S(A∗, B∗)
KN

.

For further details, we refer the reader to [20].300

6 Results301

This section presents the results from logistic regression based classification and STARMA-302

based continuous linear regression. Each algorithm is implemented and tested on sim-303

ulation and field experiment data, described in section 6.1. The framework for quan-304

tifying accuracy is described in section 6.2. Results are then presented for one-step305

forecast (section 6.3), followed by multi-step forecast for the STARMA model (sec-306

tion 6.5). Additionally, a study of the effect of the penetration rate on the forecast307

accuracy (section 6.4) is presented.308

6.1 Simulation and Field Experiment Data309

There are two data sets used in this article. The first set was generated from Paramics310

micro-simulation software. The road network modeled consists of 1,961 nodes, 4,426311

links, 210 zones and is based on the SR41 corridor in Fresno, CA. We specifically312

analyzed a sub-network that includes 9 arterial roads, 20 signals and 15 stop signs.313

Paramics simulates every car in the network. From this simulation, we extract the po-314

sition of every vehicle at one-second time intervals. This provides detailed information315

about speed and travel time through the network. The sub-network studied in this316

article includes 380 different links, each one of which is characterized with a specific317

length, a number of lanes, a direction, a speed limit and signal information. 99 VTLs318

were placed on different links, which corresponds to 156 different pairs of VTLs, in319

order to capture travel times along links and through intersections.320

The second data set was obtained as part of the official Mobile Millennium launch321

demonstration in New York City at the ITS World Congress. Twenty drivers, each322

carrying a GPS equipped cell phone, drove for 3 hours (9:00am to 12:00pm) around a323

12



(a) Paramics Map (b) New York Map (c) Test Vehicle

Figure 2: Experiment Design. (a) Map of the Paramics network in Fresno, CA. (b) Experiment route for
New York City field test used to collect the data (arrows represent the direction of traffic of probe vehicles).
(c) Test vehicle used for the New York test.

2.4 mile loop of Manhattan (see figure 2). This number of drivers constituted approx-324

imately 2% of the total vehicle flow through the road of interest. The experiment was325

repeated 3 times in order to use two of the experiments as training data for the models326

and the other to validate the model results. The operational capabilities of the system327

were demonstrated at the ITS World Congress [2] on November 18, 2008, when live328

arterial traffic was displayed for conference attendees.329

6.2 Validation Framework330

In order to compute the accuracy of the model, one needs to define the “ground truth”331

state of traffic. In this article, travel times are aggregated into a single value per time332

interval (5 minutes for Paramics, 15 minutes for New York). This single value per time333

interval is considered the true state for the interval. Determining ground truth for334

the logistic regression method requires classifying each time interval as congested or335

uncongested. The STARMA method uses the average travel time during each interval336

as the ground truth value. Both of these methods correspond to choosing appropriate337

hi(·) and gi(·) functions as described in section 3.3.338

The aggregation function hi(·) should capture the pattern of change in pace over339

different intervals to provide an aggregate quantity that is sufficiently representative of340

the congestion state, thus providing better accuracy in training the model and obtaining341

the logistic regression parameters. Based on extensive testing and simulation, it is342

observed that aggregating the travel times based on the entire data available in an343

interval fails to capture the congestion state due to the high variance of travel times344

when a link is congested. The probes most affected by congestion should thus have more345

weight in the aggregation process. A simple yet fairly effective data-driven aggregation346

method is as follows: given the set of observations for VTL pair i and interval k, Ak,i347
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Figure 3: Average estimation accuracy vs. aggregation parameter w.

is sorted such that tm1 < tm2 =⇒ Xtm1 ,i
> Xtm2 ,i

, then take348

Zk,i = hi({Xtm,i | (k − 1)t ≤ tm < kt}) :=
1

w.Mk,i

bw.Mk,ic∑
m=1

Xtm,i,

where Mk,i is the number of observations in Ak,i and 0 < w ≤ 1 is the fraction349

of observations used for aggregation. The symbol bac denotes the floor value of a. In350

words, the aggregate pace is the mean of the 100×w% observations with highest pace351

or equivalently the worst observations. The simulation results for different values of w352

are shown in figure 3. From an application-driven point of view, we select the w that353

maximizes estimation accuracy, in the present case w = 0.3. At this value, the travel354

time envelope of the time series of observations is best captured.355

The training phase of logistic regression requires as input a congestion threshold356

along with the aggregate travel times Zk,i. Since the congestion threshold should be357

chosen to be consistent with the choice of aggregate travel times to provide meaningful358

classification, we define the congestion threshold, Ti as the mean of the 100 × w%359

observations in Di with highest travel time where Di is the set of available observations360

in all intervals and w is essentially be the same value chosen for aggregation (w = 0.3361

in this section). This corresponds to choosing362

Qk,i = gi({Xtm,i|(k − 1)t ≤ tm < kt}) = I(hi({Xtm,i | (k − 1)t ≤ tm < kt}) > Ti),

where I(·) is the indicator function. The STARMA model does not use a gi function363

because it forecasts a continuous quantity.364

The logistic regression algorithm produces a probability of congestion for each VTL365

pair studied. If this probability is greater than .5, then the forecasted state is congested.366

The accuracy of the logistic regression forecasts is defined as the percentage of correctly367

forecasted states over all intervals and VTL pairs studied. For the STARMA model,368

the accuracy is defined as the percentage error between the forecasted travel time value369

and the actual travel time value as defined by the hi function described earlier.370
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6.3 Short-Term Forecast371

Both regression methods are designed to do one-step (short-term) forecasts. For each372

data set (as described in section 6.1), the performance of each model was evaluated373

by dividing the data set into a training set and a validation set. For the Paramics374

simulation data, the training set consisted of three simulation runs and the validation375

set consisted of a separate, fourth simulation run. For the New York experiment data,376

two days of data were used for training and the other day for validation. Through377

a-priori experimentation, the temporal dependency for the logistic regression model378

was set to r = 1 for the logistic regression, r = 2 for the STARMA model. The spatial379

dependency is varied for comparison in the result figures described in the following380

paragraph.381

The Paramics simulations give information about every vehicle. For testing the382

methods, only a subset of the data is used for training and inference, corresponding383

to the penetration rate. This was incorporated into the following analysis by requiring384

each regression method to produce estimates for the validation data set using only a385

small percentage of the available travel times. Figure 4 displays the one-step forecast386

results of the logistic regression and STARMA methods on the Paramics validation set387

respectively, using a penetration rate of 5%. Similarly, figure 5 displays the one-step388

forecast results on the New York validation set.389

6.4 Penetration Rate Study390

The value of 5% for the penetration rate used in section 6.3 was chosen based on the391

prospects for future adoption of GPS equipped cell phones running traffic informa-392

tion software (such as that provided by Mobile Millennium). Therefore, a study of393

the effect of the penetration rate on results is of interest to quantify the influence of394

technology adoption on estimation and forecast accuracy. Figure 6 shows the one-step395

forecast accuracy for the logistic regression and STARMA methods as a function of396

the penetration rate. From these figures, one can infer that 2% penetration rate can397

give reasonably good results, while 5% and higher give very accurate results. We also398

note that using spatial neighbors of order 1 (direct neighbors) generally provides better399

results. One can interpret this as indicating that second order neighbors lead to an400

overfit model while no neighbors lead to an underfit model.401

6.5 Multi-Step Forecast402

The STARMA model is capable of producing forecasts of any number of steps by using403

the output of the model as input for the next time interval. It is not straightforward to404

do the same for the logistic regression model since it has an output that is fundamentally405

different from the input it requires. Therefore, the discrete output of the logistic406

regression model must be transformed back to a continuous value in order to do forecast407

in the same way. This avenue is not considered in this article and is left as further408

research.409

In this section, the results of multi-step forecast for the STARMA model are pre-410

sented. Figure 7 shows the forecast results for the New York data set. The best results411

for the first step forecast are obtained for an autoregressive temporal order of 1, a412

spatial order of 2, a moving average temporal order of 1 and a spatial of 1. The two413
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Figure 4: One-step forecast validation results on a given VTL pair of the Paramics simulation
network (penetration rate: 5%). (a) Travel time data of the VTL pair and its aggregate value on 5
minutes time intervals. Both the data and the aggregate value are shown for the whole data set and for
a 5 % penetration rate. (b) One-step forecast of the congestion state produced by the logistic regression
algorithm. The bars represent the probability of congestion estimated by the models for different levels of
spatial dependency. The real state of congestion is represented with circles. (c) One-step forecast of travel
time produced by the STARMA algorithm.
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Figure 5: One-step forecast validation results for logistic regression on one VTL pair of the
New York network. (a) Travel time data of the VTL pair and its aggregate value on 15 minutes time
intervals. (b) One-step forecast of the congestion state produced by the logistic regression algorithm. The
bars represent the probability of congestion estimated by the models for different levels of spatial dependency.
The ground truth state of congestion is represented with circles. (c) One-step forecast of travel time produced
by the STARMA algorithm.
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Figure 6: Average one-step forecast error vs. penetration rate for all VTL pairs in the Paramics
dataset. (a) Logistic Regresion Forecast Classification Error. (b) STARMA Travel Time Forecast Error.

plots for which the moving average temporal and spatial orders are both equal to 1414

show the best result for the first step forecast, but the error becomes quickly significant415

when the forecast step increases. On the other hand, the two other plots for which the416

moving average orders are one temporally and two spatially show a worse result for the417

first step forecast but considerably better results for more than one step. The choice of418

the parameters is therefore a very important step and should take into consideration419

the performance of the forecasting for more than one step ahead. Analysis of a larger420

data set is necessary to come to a statistically significant conclusion about the best421

way to chose the spatio-temporal parameters for the STARMA model.422

7 Conclusion423

This article presented two statistical learning algorithms for estimating and forecast-424

ing arterial traffic conditions on a network. A first implementation inside the Mobile425

Millennium system demonstrates both algorithms’ ability to successfully forecast arte-426

rial travel times when sufficient training data is available. In summary, this work has427

achieved the following:428

1. It established the validity of a new data collection paradigm on arterial road-429

ways, namely the inter-VTL travel time data collection method for travel time430

estimation and forecast at low penetration rates.431

2. It created data aggregation methods for capturing trends in arterial travel times432

(functions hi(·) and gi(·)).433

3. It applied logistic regression and STARMA methods for learning spatio-temporal434

parameters used for estimating arterial link travel times.435

4. It validated both models using a training/validation partition of the data, includ-436

ing a Paramics simulation data set and the results from three field tests in New437

York City.438
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Figure 7: Forecast accuracy. (a) and (c): Forecast error for a VTL pair in the Paramics and New York
networks, respectively. (b) and (d): Average forecast error as a function of the number of forecast steps
into the future, Paramics and New York networks, respectively. One step is 5 minutes. In (b) and (d), t
represents the temporal dependency and s represents the spatial dependency.
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5. It analyzed the effect of penetration rate on forecast accuracy.439

6. It analyzed the forecast horizon and its effect on the forecast accuracy.440

7. It implemented real-time algorithms inside the Mobile Millennium system, public441

displaying arterial traffic information.442

This work is foundational to future research using statistical learning techniques443

to forecast travel times in urban networks. Extensions to other statistical learning444

methods beyond logistic regression and STARMA are needed to assess which technique445

is most appropriate and efficient to the case of arterial travel times. Additionally,446

there are a number of analyses that could extend the current work. In particular, the447

following questions are open future research topics:448

• Given the segment by segment travel time forecasts, how can accurate forecasts449

of route travel times be determined?450

• The current work requires a full training set on which to operate and needs an451

aggregated data value (hi function). How can the data requirements be relaxed452

while maintaining high accuracy? The goal here is to fill in “missing” data using453

knowledge of typical traffic patterns.454

• How can the results from the specific examples here be generalized to all roads by455

using common features such as speed limit, number of lanes, number of signals,456

number of stop signs, etc.? The goal here is to be able to estimate spatio-temporal457

model parameters in locations where no validation data yet exists.458

Those questions are part of the ongoing work in Mobile Millennium. Current efforts459

are focused on giving more accurate forecasts of arterial travel times on a network-wide460

scale.461
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