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Abstract

This article investigates the problem of incorporating mobile probe data collected from GPS equipped
cell phones into estimation algorithms for travel time. We use kinematic wave theory to create a model-
ing framework capable of incorporating trajectory data into the model. The problem of including loop
detector data in this model is performed using a standard approach available in the literature. The prob-
lem of fusing this data with probe data is formulated using the Moskowitz function, which results from
kinematic wave theory. Using this formulation, two linear programs are posed to compute upper and
lower bounds travel time through the corresponding section of highway. The method thus provides a
guaranteed range for the average travel time experienced by vehicles on the highway. The method is
illustrated with data collected during the Mobile Century experiment on February 8th, 2008, using 100
Nokia N95 phones traveling onboard cars driving loops on I880 in California. A sampling and pene-
tration rate study shows that the method provides accurate travel time estimates for penetration rates as
low as 0.1% and spatial sampling strategies on the order of 0.2 miles. The performance of the method is
illustrated with several case studies, in which measurements gathered by a few vehicles are sufficient to
significantly improve results obtained from sparse loop detectors.
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1 Introduction

Global scale traffic monitoring. Over time, the demand for mobility has dramatically increased, leading
to a $78 billion annual drain on the U.S. economy in the form of 4.2 billion lost hours in commute and
2.9 billion gallons of wasted fuel, which amounts to 58 fully-loaded supertankers [25]. While there is
almost no space for additional roads or freeways in the vast majority of urban and suburban environments,
there is an enormous potential gain from real-time knowledge of traffic. This information has the potential
to enable system solutions such as ramp metering [36], dynamic speed limits [19] and individual level
solutions in which drivers can access traffic in real-time, and obtain customized itineraries and schedules
from their location to avoid major congestion. Currently, only major freeways are instrumented in the
US. The fundamental missing piece of information is that of secondary itineraries including expressways
and arterial roads. Current traffic information comes from fixed sensors, for example loop detectors in the
pavement [21], RFID transponders, radars or cameras [20]. While this information can easily be accessed
on the internet [42, 43, 44, 45] and on phones using cell phone versions of these websites, these services
only provide information where the transportation network is equipped with such detectors. To provide a
global solution to this traffic information gathering problem, one needs traffic information everywhere where
there is congestion within the transportation network. Given the high costs of deploying a traffic monitoring
system and the lack of public infrastructure, mobile probes provide a feasible alternative for this problem.
With the notable exception of the data from dedicated fleets [26] such as the police force, taxis, FedEx, UPS
(all of which have very limited coverage), such traffic data simply does not exist on a global scale.

Smartphones as traffic probe sensors. In this context, the convergence of communication and
sensing on multi-media platforms such as smartphones provides the engineering community with unprece-
dented monitoring capabilities. Smartphones such as the Nokia N95 now include a video camera, numerous
sensors (accelerometers, light sensors, GPS), communication outlets (wireless, radios, bluetooth, infrared,
USB, jack video-output / microphone), computational power and memory. The rapid penetration of GPS
in phones enabled geolocalization and context awareness, leading to the explosion of Location Based Ser-
vices (heavily relying on mapping) using phones. Their low cost, portability and computational capabilities
make smartphones useful for numerous sensing applications in which they act as sensors moving with hu-
mans embedded in the built infrastructure. Large scale applications include traffic flow estimation [40],
physical activity monitoring for assisted living at home [29], geotagging [18], and population migration
tracking [17, 2]. In this context, smartphones appear as a viable source of traffic data which can be used to
complement existing traffic sensors.

Incorporation of probe data into traffic models. One of the major challenges in using mobile
probe data for traffic estimation is the difficulty to incorporate this data into traffic models, which are tra-
ditionally used to describe highway traffic. Several types of models can be used: statistical models [22, 4],
and flow models [24, 32]. When a flow model is used, this process is known as inverse modeling or data
assimilation: it consists in incorporating data in the mathematical model of a physical system, in order to
estimate the current state of the system and forecast its future state [23, 3]. In the field of inverse model-
ing, Lagrangian sensing specifically refers to measurements performed along a sensor’s trajectory which it
usually cannot control. Examples of this are smartphones traveling onboard cars following highway traffic
flow. This is in contrast to Eulerian sensing, in which sensors are fixed (for example, video cameras or
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loop detectors along highways) and monitor a specific control volume in a static manner. While inverse
modeling using Lagrangian sensors is a well established field in oceanography [23, 3], it is still a relatively
novel technique in the field of transportation engineering. Traditional approaches such as Kalman Filtering
(KF) have been applied to traffic models to perform estimation, in particular using first order models such
as the Cell Transmission Model (CTM) [10, 11], see in particular [27, 35, 34, 28]. Extended Kalman (EKF)
filtering has been used to handle second order models, when the discretization scheme used allows it, see
for example [37]. For more complicated problems involving partial differential equation models, Ensemble
Kalman Filtering (EnKF) [15] has been used for speed estimation on the highway [38, 39]. All the afore-
mentioned methods produce a best estimate of traffic (in some sense, for instance in the least square sense),
sometimes with statistics related to the produced results, such as confidence or probability associated with
the prediction.

Problem statement. The present work investigates a practical problem which goes beyond the spe-
cific problem data assimilation (i.e. production of an estimate):

Problem 1: Given a set of loop detectors, and given a set of probe vehicles equipped with GPS, (i) how
to reconstruct travel time, (ii) how to produce a guaranteed range for travel time, given the knowledge of
the data?

This problem specifically addresses needs from the traveling public, since it is aimed at providing the
public with the travel time information [8], and a range of validity of this information. The term “guaranteed
range” refers the possible range of travel times, taking into account the uncertainties in the model, and
assuming that the loop detector and probe data are exact. In addition, we also investigate the following
problem:

Problem 2: What is the influence of the penetration rate of equipped vehicles and of the spatial sampling
strategy on the range of the travel time estimation?

This second problem is helpful for cellular network operators and cellular phones manufacturers, who
are currently in the process of mapping the transportation network with “virtual detectors”, i.e. GPS data
collection mechanisms which partly rely on the geometry of the transportation network.

Organization of the article. This article is organized as follows: Section 2 summarizes the flow
models used in this study. In Section 3, we describe a specific spatial strategy currently used by Nokia to
sample traffic, and explain how this type of data can complement existing loop detector data. The section
finally summarizes the data assimilation procedure used and the corresponding algorithm developed for the
estimation of travel time and the corresponding range of interest. In section 4, the method is implemented
using the Mobile Century data set [14, 38, 39], which consists of loop detector and GPS-based smartphone
data collected for 8 hours of traffic on I880 in Union Landing, CA, for 100 vehicles equipped with Nokia
N95 phones. This section presents some conclusions of numerical results obtained for travel time estimation,
as well as a study of the influence of penetration rate and spatial sampling strategy.

Proceedings of the Transportation Research Board (TRB), 2009 
Washington, DC, January 10-14, 2009 THIS IS NOT THE FINAL VERSION



4

2 Background

2.1 Traffic flow models
Kinematic wave theory. Traffic flow on a highway segment can be described using both density and flow
functions, which represent an aggregated number of vehicles per space (respectively time) unit. The present
article uses the Lighthill-Whitham-Richards (LWR) partial differential equation (PDE) [24, 32], which is
a first order model obtained from conservation of vehicles and an empirical relation between vehicle flow
q(t, x) and vehicle density ρ(t, x):

∂ρ(t, x)
∂t

+
∂q(ρ(t, x))

∂x
= 0 (1)

The flow-density relation q(ρ) is known as flux function or fundamental diagram [33, 1, 6]. In the
remainder of this article, we use a triangular diagram [10, 11, 13], as commonly done in the literature:

q(ρ) =
{
vρ if ρ ∈ [0, ρc]
w(ρc − ρ) + vρc if ρ ∈ [ρc, ρmax]

Figure 2.1: Representation of a triangular flux function.

In the previous diagram, v is the free flow speed, ρc is the critical density, and ρmax is the maximal density.
All these quantities are illustrated in Figure 2.1. The capacity of the road is the maximal flow qmax = ρc v.
The parameters v, w, ρc and ρmax are related by ρmaxw = ρc(v + w), which means that the triangular
fundamental diagram is fully characterized by three parameters.

Because density is an aggregated quantity, which cannot be measured by probe vehicles directly, the
LWR PDE is difficult to use as such to incorporate vehicle trajectory data available from probe vehicles.
Instead, we use an alternate (equivalent) representation of traffic which was introduced by Newell and Da-
ganzo, following the work of Moskowitz [30, 12, 13]. The Moskowitz function M(t, x) uses consecutive
integer labels assigned to vehicles entering the highway at a user defined location x = xin, counted from
the reference point (t = 0, x = xin), where the first vehicle is assumed to label 0. Assuming that vehicles
do not pass each other, one could imagine that an observer at location x = xin numbered the vehicles as
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2.2 Reconstruction of a posteriori travel time function 5

they passed him. The Moskowitz function M(t, x) (also known as cumulative number of vehicles function)
represents the number of the last vehicle to pass an observer at location x before time t, and encodes the
distribution of the vehicles on the highway at all times. The space and time derivatives of the Moskowitz
function are related to the flow and density functions as follows [31, 12, 13]:

∂M(t, x)
∂t

= q(ρ(t, x)) and
∂M(t, x)

∂x
= −ρ(t, x). (2)

Using equation (2), one can transform equation (1) into the following Moskowitz Hamilton-Jacobi
PDE [12, 13]:

∂M(t, x)
∂t

− q
(
−∂M(t, x)

∂x

)
= 0. (3)

Solution of the Moskowitz HJ PDE. Solutions to PDE (3) are known [9, 16] and can be computed
with standard numerical analysis tools. Solving equation (3) requires the knowledge of the initial state of
the highway, i.e. the knowledge of an initial function M0(x) := M(0, x) at time t = 0, which would
represent a distribution of labels of vehicles initially on the highway. Note that when this knowledge is not
available, one can use the “flush” effect of the highway (i.e. waiting long enough until initial vehicles have
disappeared from the section of interest) to avoid the need for this data. Assuming that loop detector data
is available at locations x = xin (upstream) and x = xout > xin (downstream), one can prescribe counts at
these locations, i.e. M(t, xin) = γ(t) and M(t, xout) = β(t), where γ(t) and β(t) are the vehicle counts
measured by the detectors. In other words, the label γ(t) is incremented by one each time a car drives by
the location x = xin. A similar rule applies at x = xout. Finally, given a vehicle with an integer label Mi

and a trajectory given by xi(t), we know that the value of the function M(t, xi(t)) is constant and equal
to Mi, because along the trajectory xi(t) of vehicle Mi, the value of the label Mi does not change, thus
M(t, xi(t)) = Mi for all times t during which the vehicle is on the corresponding segment of highway. The
corresponding initial, boundary and internal conditions on the function M(t, x) can thus be summarized
by:

• Initial condition M(0, x) = M0(x) Vehicle distribution at initial time
• Left boundary condition M(t, xin) = γ(t) Inflow of vehicles
• Right boundary condition M(t, xout) = β(t) Outflow of vehicles
• Internal conditions M(t, xi(t)) = Mi Trajectory measurement for the vehicle labeled Mi for all i

2.2 Reconstruction of a posteriori travel time function

This work is focused on the computation of the a posteriori travel time TT (t) at time t using the knowledge
of the Moskowitz function. The a posteriori travel time is defined as follows. If a vehicle Mi crosses the
upstream boundary xin of the highway at time τ , and crosses the downstream boundary xout at time t, the
a posteriori travel time TT (t) is defined by TT (t) = t − τ , and represents the time necessary to cross the
road section observed by the vehicle Mi leaving the highway at time t. The a posteriori travel time can thus
be obtained from the boundary condition functions γ(τ) and β(τ) using the following procedure:
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Algorithm 1 Algorithm for computing the travel time function

1. Input t (time at which one wants to compute travel time)
2. Read M := β(t) from downstream loop detector
3. Find τ such that γ(τ) = M from upstream loop detector (using backtracking search)
4. Compute TT (t) := t− τ (if τ exists)

3 Data assimilation using mixed Eulerian/Lagrangian Data

3.1 Model of label evolution and trajectories

Boundary conditions. Figure 3.1(a) illustrates the physical interpretation of the boundary conditions
γ(·) and β(·) of the Moskowitz function in terms of the loop detector counts. As can be seen in this figure,
data is prescribed at x = xin: M(t, xin) = γ(t) where γ(t) is the label function at xin, which is constructed
from the loop detector measurements by summing the vehicles as they pass it. For example, if the label of
the vehicle passing at t = 17 (min) is γ(17) = 25, and five vehicles pass between t = 17 (min) and t = 18
(min), then γ(18) = 22. Similarly, downstream, at x = xout: M(t, xout) = β(t) where β(t) is the label
function at xout, which is constructed from the loop detector at x = xout.

Initial conditions. The knowledge of the initial vehicle distribution (similar to an aerial picture of the
road at time t = 0), would give the initial condition represented with a dash line, in other words the labels of
cars as initially positioned on the highway. The corresponding function is called M0(x). For example, if we
(arbitrarily) label the vehicle at x = xin and t = 0 vehicle zero (M(0, xin) = 0), and if there are 20 vehicles
between x = xin and x > xin, then M(0, x) = −20. Note that the labels can all be arbitrary shifted by the
same amount, which is prescribed at xin: if one arbitrarily decided to call the vehicle at x = xin vehicle 28,
i.e. M(0, xin) = 28, we would have M(0, x) = 8. It can easily be seen that this shift does not matter in
equation (3) as long as it is the same for all x and t, since the PDE only depends on derivatives of M(·, ·).
For practical reasons, initial condition data is not easily measurable. The method proposed next does thus
not assume knowledge of M0.

Probe vehicle conditions. In Figure 3.1(a) the solid trajectory line on the time-space diagram rep-
resents the successive locations where the phone can be probed along a vehicle trajectory. For privacy
reasons, the system does not track entire trajectories of the vehicles (it is represented this way on the figure
for illustration purposes – in practice only subsets of this trajectory would be transmitted to the system).
For these subsets of trajectories, we know that at time t when a measurement comes (the vehicle being at
position x = xi(t)), the label function M(t, xi(t)) at this location and time will be equal to the label Mi,
i.e. M(t, xi(t)) = Mi.

3.2 Computation of the boundary condition functions using loop detector data

Figure 3.1(b) illustrates the procedure used in this article to collect data used for the data assimilation
procedure.
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3.2 Computation of the boundary condition functions using loop detector data 7

(a) Illustration of the notation used in the kinematic wave
theory.

(b) Data collection procedure used by the algorithm. The data used
for the picture comes from the Mobile Century experiment [41].

Figure 3.1: Physical interpretation of the boundary conditions on the Moskowitz function.

Assimilation of the boundary conditions. The data assimilation procedure developed in this
article requires us to incorporate loop detector data (flow data only) into the flow model. For this, the
knowledge of the functions γ and β is necessary. By definition of these loop detector flows, γ and β can
be obtained (modulo a constant) by direct integration of the flows measured by the detectors. Thus, calling
qinflow(t) the flow measured by the upstream detector and qoutflow(t) the flow measured by the downstream
detector, we have:

γ(t) =
∫ t

0
qinflow(θ)dθ and β(t) =

∫ t

0
qoutflow(θ)dθ + ∆ (4)

The parameter ∆ represents the value1 of β(0, xout). The total number of vehicles present on the high-
way at time t = 0 is −∆ ≥ 0, which is an unknown of our problem. If the parameter ∆ was known (for
instance by taking a picture of the highway at initial time and counting the total number of vehicles on the
highway), then the a posteriori travel time could be computed exactly, assuming that the loop detector flow
data was errorless. However, since it is not the case, the parameter ∆ must be estimated. Algorithm 1 can
then be used to compute the travel time. As will appear in the next sections of this algorithm, ∆ is never
known a priori (unless M0 is known, which is difficult in practice). It will therefore become one of the
decision (dummy) variables of the algorithm.

Assimilation of the probe data. Internal conditions of the problem are collected using a system
called Virtual Trip lines (VTLs). VTLs are geographical markers stored in the client (i.e. the mobile hand-
set), which trigger a position and speed update whenever a probe vehicle crosses them. A VTL can thus be
viewed as a virtual loop detector, which can collect speed information for vehicles crossing it. These VTLs
are part of a Nokia proprietary system which ensures the privacy of the users. In essence, it provides readings
of the xi(t) function at specific geographical locations on the highway according to a sampling procedure

1Note that γ(0) = 0 by assumption.
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3.3 Linear Program formulation of the data assimilation problem 8

used by Nokia to guarantee privacy of the users. Figure 3.1(b) shows how this data becomes available to
us. As can be seen from Figure 3.1(b) probe data is known at sampling locations (VTLs), between which
vehicle trajectories are assumed to be linear.

3.3 Linear Program formulation of the data assimilation problem

Integration of the loop and probe data into the model. The problem of integrating initial, boundary
and internal conditions into the Moskowitz equation (3) is in general extremely challenging. In this article,
we decompose this complex problem into many simple problems associated to each of the value conditions
(initial, boundary, and internal). For this, we define a component function associated to each value condition
that must be satisfied by the Moskowitz function [6, 7] as follows:

• Initial condition component: MM0(t, x). This initial condition function can be computed directly from
the initial condition M0(x); it encodes the dependence of the solution on the initial condition.
• Left boundary condition component: Mγ(t, x). This left boundary condition function can be computed

directly from the left boundary condition γ(t); it encodes the dependence of the solution on the left
boundary condition (upstream loop detectors).
• Right boundary condition component: Mβ(t, x). This right boundary condition function can be computed

directly from the right boundary condition β(t); it encodes the dependance of the solution on the right
boundary condition (downstream loop detectors).
• Internal condition component: MMi

(t, x). This internal condition function can be computed directly
from the trajectory xi(t) of vehicle Mi; it encodes the dependance of the solution on the internal condi-
tion.

The component functions can be computed individually using dynamic programming methods [12, 13],
a Lax-Hopf formula [1], or using the minimization of closed-form expression functions [7]. When physical
compatibility conditions are met [6], the solution to the Moskowitz equation (3) can be simply computed as
the minimum of the component functions [1, 6, 7]:

M(t, x) = min
(
MM0(t, x),Mγ(t, x),Mβ(t, x),MM1

(t, x), . . . ,MMn
(t, x)

)
(5)

In order to be able to simultaneously impose the initial, boundary and internal conditions, these con-
ditions must satisfy necessary and sufficient conditions known as compatibility conditions [6, 7]. Indeed,
in arbitrary initial, boundary and internal conditions cannot be simultaneously imposed on the Moskowitz
function. For instance, if the initial condition consists in a completely congested highway, no positive inflow
can be imposed at the entrance xin, since there is no available space for entering vehicles. Similarly, if the
highway is initially empty, no positive outflow can be imposed since no cars are present.

Linear program formulation. We define the decision variable X as X := (∆,Mi,M2, . . . ,Mn)
where n is the total number of probe vehicles used for the internal conditions. The compatibility conditions
can be shown to be equivalent to a set of k linear inequalities2 in the variable X . The mathematical proof

2The number k depends upon the type of conditions used for the reconstruction, the repartition of the car trajectories, and the
time horizon.
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of this fact is cumbersome and algebraically involved. It is out of the scope of this article [5]. The linear
inequalities resulting from [5] can be written formally as AX ≤ b, where A ∈ Rk×n+1 and b ∈ Rk. The
matrix A and the vector b depend upon the inflow, outflow, and trajectory data.

We define the vector c as cT = (1, 0, 0, . . . , 0). Using this definition, we can express ∆ as ∆ = cTX .
Since we are interested in the value of ∆ only, we consider the following Linear Programs (LPs):

min: cTX
s.t.: AX ≤ b

max: cTX
s.t.: AX ≤ b (6)

The solution of the above LPs yield two objective values ∆min and ∆max, which can be interpreted
as follows: the value −∆min represents the maximal number of vehicles that can possibly be present on
the highway, and the value −∆max represents the minimal number of vehicles that must be present on the
highway (assuming our data is exact). Since ∆ ∈ [∆min,∆max], we can compute a corresponding range of
travel times TTmin(t) and TTmax(t) using Algorithm 1. The overall method is represented in Algorithm 2.

Algorithm 2 Process used to construct travel time ranges from Eulerian/Lagrangian measurements.

1. Input Loop detector data (flow data) and VTL data
2. Compute Boundary and internal conditions γ, β and µi
3. Compute A and b
4. Compute ∆min and ∆max (using LP (6))
5. Compute TT (t)

4 Mobile Century Implementation

In this section we implement the previous procedure using loop detector data, probe vehicle data, and video
detector data collected during a field experiment known as Mobile Century. We present an analysis of the
sampling strategies and the number of equipped vehicles to implement this algorithm in practice.

4.1 Description of the experiment

The Mobile Century [41] experiment took place on February 8th, 2008. It was conducted on Highway I-880,
near Union City, CA, between Winton Ave. and Stevenson Blvd. (see Figure 4.1). This 10-mile long section
of highway was selected specifically for its complex traffic properties, which include alternating periods of
free-flowing, uncongested traffic, and slower moving traffic during periods of heavy congestion. The section
also has a high density of loop-detectors (17 loops on the section of interest). The data from these sensors is
collected by the Freeway Performance Measurement System (PeMS).

The experiment consisted in deploying 100 GPS- equipped Nokia N95 cell phones on a freeway during
eight hours. 165 UC Berkeley students drove loops on the section of interest between 10am and 6pm. This
period encompasses both free flow and congested traffic, and the transition between the two of them.

The data was collected in two ways during the experiment.
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4.1 Description of the experiment 10

Figure 4.1: Set-up of the Mobile Century experiment. The figure represents the placement of the video
camera and the loop detectors selected for the computation and the validation of our results.

(i) A privacy preserving architecture was developed, which uses the concept of Virtual Trip Line (VTL)
explained earlier. During the experiment, we deployed 40 VTLs in the section of interest (each VTL
covers both travel directions). This data was used to produce real-time travel time and speed estimates
on the section of interest and presented to the press in real-time [41]. The method used a data assimila-
tion algorithm based on Ensemble Kalman Filtering (EnKF) [38], which provided an estimate of travel
time. On February 8th, 2008, the goal of the algorithm was to show the possibility of reconstructing
speeds and travel time in real-time from a set of probe vehicle measurements.

(ii) Each cell phone was storing its position and velocity every three seconds. This data (trajectory data)
was stored for archival purposes in order to evaluate the quality of the data a posteriori. It was only
generated for experimental validation, and would not be collected in an operational system.

In order to validate the estimation results of all algorithms developed during this project, video data
was collected from three bridges in the deployment area. The travel times were experimentally measured
using a set of six HDV cameras running on the Mowry Ave., Decoto Rd. and Winton Ave. overpasses. The
video data was sent to six laptops which were synchronized before the experiment and archived the data
with timestamps. The camera footage was analyzed after the experiment, and the identifiable license plates
(approximately 70% of the vehicles) were subsequently stored in a database. A matching algorithm was
used to compute travel time through license plate reidentification. Figure 4.1 shows the deployment area of
two of the three camera locations used to produce the data presented in this article. In the rest of the article,
the corresponding travel time data will be depicted by dots in the figures of the subsequent sections.
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4.2 Analysis of probe vehicle penetration and VTL spacing 11

4.2 Analysis of probe vehicle penetration and VTL spacing

This section presents an analysis of probe vehicle penetration rate and VTL spacing, using the data presented
in the previous section.

Penetration rate. The penetration rate achieved during the experiment was 3% to 5% depending on
the time of the day [14]. We use VTL data collected at each of the 40 VTL deployed on the section of
highway. In an operational system, not all VTL measurements would be used by the system to probe all the
vehicles systematically. In practice, a vehicle traveling across a VTL is randomly probed. For the present
study, we assume that all vehicles are sampled, and we artificially decrease the number of measurements
used by the algorithm in order to simulate lower penetration rates. This procedure is a way to degrade the
data set in order to assess the performance of the algorithm for low penetration rates.

VTL degradation. In order to study the influence of VTL spacing on the quality of the results, we also
reduce the available VTLs deployed for this study, i.e. artificially suppress some of them in our parametric
study. The goal of this procedure is to study the performance of the algorithm when measurements are
spatially sparse.

Parametric study of penetration rate and VTL sampling. Using the two decimation procedures
outlined above, we solve the two linear programs (6) for ∆min and ∆max for each of the penetration rates
and the VTL spacing chosen in the study. For each of these values, the length of the period considered
for the assimilation is one hour and 25 minutes. The corresponding bounds on travel times (computed
from the ∆min and ∆max) are obtained for a vehicle initially entering the segment of interest. The results
are summarized in Figure 4.4. In this figure, we plot for each pair (penetration rate - VTL spacing) the
difference TTmax(t)−TTmin(t). This range represents the guaranteed bound on average travel time (subject
to the overtaking assumption and perfect data assumption). As expected, the range is the smallest for high
penetration rates and low VTL spacing. The best corresponding range provided by the method is of the order
of 100 seconds, for an average travel time of about 1200 seconds. This corresponds to a 8% error provided
by the method. These results are very encouraging: they show that even with low penetration rates, and
reasonable VTL spacing, the method is able to evaluate a guaranteed range for average travel time within
less than 10% of its actual value. This type of information is very helpful for deployment studies, in order
to determine the operational conditions for which this system would become valuable.

4.3 Results

Figures 4.3 and 4.4 illustrate the numerical results obtained by solving problem (6).

• Figure 4.2 shows the range of travel times provided by the method if loop detectors only are used. Obvi-
ously, with two loop detectors separated by 6.06 miles, the range cannot be tight because of the extremely
large uncertainty of traffic when only two measurement stations are available for such a long distance. As
can be seen in this figure, the cloud of validation data (obtained from video) is included in this range. The
figure also shows the estimate which would be obtained by reading the PeMS speed data directly (which
falls outside of the range and is far from the validation data). As can be seen in the right subfigure, the
estimate using all 16 PeMS speed detectors existing in this section falls inside the range and is closer to
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the could of points (at the expense of using 16 detectors instead of 2 as in the previous figure).
• Figure 4.3 represents the guaranteed bounds on the travel time obtained from the algorithm throughout

the experiment duration. As expected, this range gets tighter as the number of vehicles increases. The
addition of a single vehicle trajectory already produces drastic improvements in the predicted range. By
construction of the optimization program, incorporating new trajectory information adds new constraints,
which can only reduce the size of the feasible set AX ≤ b, thus reducing ∆max − ∆min and the range
of guaranteed average travel times. Since the non-overtaking assumption is clearly wrong, and since the
data is inexact, the ranges computed for the travel time function do not necessarily encompass exactly
the actual travel times anymore. The next section provides explanations for this fact. Note however that,
while there might be some relatively small error with these bounds, one can clearly see from these four
figures that the estimates are not only tight, but also reproduce the large scale trends of the data (in the
present case the progressive decrease of travel time as morning congestion dies out).

Figure 4.2: Comparison of the computation of the travel time using our algorithm and a naive method
based on integration of the speed data given by the loop detectors. Loop detector data only is used in
this example (no VTL data). The horizontal axis represents the time t (unit: hours and minutes). The
vertical axis represents the travel time (unit: sec). The upper and lower bounds on travel time, computed by
the algorithm (using flow data) described before, are represented by dashed lines. The actual travel times
obtained from the video data are represented by dots. The travel time computed by the commonly used
PeMS algorithm using velocity data is represented by a solid line. It uses only the first and last loop in the
left figure, whereas all the intermediate loop are used in the right figure.

4.4 Comments on the results

The quality and validity of the results depends on the assumptions formulated for the model (in particular if
they are satisfied experimentally) and the data. Measurements errors can have serious consequences on the
accuracy of the method. We now analyze some of the sources of inaccuracy of the results.

• The model assumes that cars do not overtake each other (no shearing) and computes an associated
possible range of travel times for all the vehicles driving at the same time. This is a common assump-
tion in numerous transportation engineering articles. However, vehicles overtake each other, their
label is not constant along their trajectory. As the distribution of the travel times (in Figure 4.3) do not
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(a) Loop detectors data only. (b) Loop detectors data+1 trajectory.

(c) Loop detectors data+3 trajectories. (d) Loop detectors data+9 trajectories.

Figure 4.3: Estimation of the travel time function. The horizontal axes represent the time t (unit: hours
and minutes). The vertical axes represent the travel time TT . Subfigure legends are the same as in the pre-
vious figure. The influence of the penetration rate (respectively 0%, 0.01%, 0.03% and 0.1%) is illustrated
in the subfigures (respectively (a), (b), (c) and (d)).

satisfy the non-shearing assumption, some travel times may not satisfy the guaranteed bounds (which
are computed for a non-shearing situation only).

• On and off ramps are not taken into consideration by this study, because of the lack of available data.
The conservation of vehicles assumption is therefore violated. Data shows that the cumulative number
of vehicles that exits the road section by the loop at point B is increasing faster than the cumulative
number of vehicles that enter at point A. Over the course of eight hours, the difference reaches 9247
vehicles, which exceeds the road section capacity (5041 vehicles) and consequently invalidate this
assumption. The model integrates this additional flow of vehicles as a constant throughout the day.
But in the reality, this flow may vary with the time of day. The additional knowledge of inflows and
outflows would improve the accuracy of the computation.

• Loop detector data is known to be noisy and biased. Loop detectors report their raw data to the
PeMS system every 30 seconds. This raw data is hardly directly useable. PeMS filters this data and
averages it on a five minutes time period. Despite the filtering and the data processing, this data still
has significant issues which need to be addressed. The bounds are guaranteed only when the VTL and
loop detector data are exact. Since this is never the case in practice, the guarantee is lost.
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Figure 4.4: Guaranteed range (unit: seconds) for the estimation of the travel time TT (t) for a ran-
domly chosen time t. The horizontal axis represents the penetration rate (unit: percent) of the GPS-
equipped phones in the traffic. The vertical axis represents VTL density (unit: number of VTL per mile).
The total error TTmax(t)−TTmin(t) on the parameter TT (t) is indicated using a grey scale, a darker shade
representing a larger error.

• The time sampling of the loop detectors is low. The average five minute update gives a low time
resolution for the boundary conditions. Using a confidence interval for the upstream and downstream
boundary conditions increases the numbers of parameters to be estimated by the computation and
improves the robustness of the model.

• Experimental set-up. The locations of the loop-detectors form the boundary of the road section con-
sidered for the computation of the travel time (this is illustrated in Figure 4.1). As these locations do
not fit perfectly with the location of the video cameras (located on the bridges) giving the travel time
used for the validation of the results, we interpolate the computed travel time on the section delimited
by the cameras. As the road section considered for the computations (delimited by the loop detectors)
represents 88% of the road section delimited by the cameras, we assume that the computed travel time
is 88% of the travel time between the two video cameras. This is obviously an approximation, and
induces additional numerical error.

5 Conclusion

This article investigates a specific data assimilation technique used to incorporate probe vehicle data into
flow models. The study uses a traditional traffic flow model (the Lighthill-Whitham-Richards theory), for-
malized using the Moskowitz framework. This framework enables the use of a function, whose isolines
correspond to vehicle trajectories. The problem of including loop detector data (flow data) in this frame-
work is done following the traditional kinematic wave approach. The problem of fusing it with probe data
is formulated using the Moskowitz function. Based on this formulation, two linear programs are created to
compute upper and lower bounds of the estimate of initial numbers of vehicles on the highway segment.
These bounds are taking into account the uncertainty in the model, and are used to find bounds on travel
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time through the corresponding section of highway. The method is implemented on data collected during
the Mobile Century experiment, using 100 Nokia N95 phones traveling onboard cars driving loops on I880
in California. A sampling and penetration rate study shows that the method provides accurate travel time
estimates at low penetration rates and reasonable sampling strategies. The performance of the method is
illustrated with several case studies in which travel time estimates using loop detector data only can be
improved. We also show that the data gathered by a few vehicles is sufficient to significantly improve re-
sults obtained by sparse loop detectors. Future works will be dedicated to the estimation of travel times,
taking into account the uncertainty of the data (in addition to the model uncertainty), and relaxing the non-
overtaking hypothesis.

ACKNOWLEDGMENTS

The authors are grateful to Jean Pierre Aubin, who developed the mathematical framework used in this
article, for his vision, his guidance and his scientific generosity. We thank Patrick Saint-Pierre for his help
on setting the first version of the code used for this study and for fruitful conversation. The algorithms
developed in this article are using technology produced by the company VIMADES. The authors also wish
to thank Saurabh Amin and Dan Work for their help and valuable suggestions.

References

[1] J.-P. AUBIN, A. M. BAYEN, and P. SAINT-PIERRE. Dirichlet problems for some Hamilton-Jacobi
equations with inequality constraints. In press: SIAM Journal on Control and Optimization, 2008.

[2] H. BAR-GERA. Evaluation of a cellular phone-based system for measurements of traffic speeds and
travel times: A case study from Israel. Transportation Research Part C, 15(6):380–391, 2007.

[3] A. F. BENNETT. Inverse Methods in Physical Oceanography. Cambridge University Press, Cambridge,
UK, 1992.

[4] P. BICKEL, C. CHEN, J. KWON, J. RICE, E. VAN ZWET, and P. VARAIYA. Measuring Traffic. Statis-
tical Science, 22(4):581–597, 2007.

[5] C. G. CLAUDEL and A. M. BAYEN. Guaranteed bounds for traffic flow parameters estimation us-
ing mixed Lagrangian-Eulerian sensing. In Proceedings of the 46th Annual Allerton Conference on
Communication, Control, and Computing, Allerton, IL, Sep. 2008.

[6] C. G. CLAUDEL and A. M. BAYEN. Lax-Hopf based incorporation of internal boundary conditions
into Hamilton-Jacobi equation. Part I: theory. Submitted to IEEE Transactions on Automatic Control,
2008.

[7] C. G. CLAUDEL and A. M. BAYEN. Lax-Hopf based incorporation of internal boundary conditions
into Hamilton-Jacobi equation. Part II: Computational methods. Submitted to IEEE Transactions on
Automatic Control, 2008.

Proceedings of the Transportation Research Board (TRB), 2009 
Washington, DC, January 10-14, 2009 THIS IS NOT THE FINAL VERSION



REFERENCES 16

[8] B. COIFMAN. Estimating travel times and vehicle trajectories on freeways using dual loop detectors.
Transportation Research Part A, 36(4):351–364, 2002.

[9] M. G. CRANDALL, L. C. EVANS, and P.-L. LIONS. Some properties of viscosity solutions of Hamilton-
Jacobi equations. Transactions of the American Mathematical Society, 282(2):487–502, 1984.

[10] C. F. DAGANZO. The cell transmission model: a dynamic representation of highway traffic consistent
with the hydrodynamic theory. Transportation Research, 28B(4):269–287, 1994.

[11] C. F. DAGANZO. The cell transmission model, part II: network traffic. Transportation Research,
29B(2):79–93, 1995.

[12] C. F. DAGANZO. A variational formulation of kinematic waves: basic theory and complex boundary
conditions. Transporation Research B, 39B(2):187–196, 2005.

[13] C. F. DAGANZO. On the variational theory of traffic flow: well-posedness, duality and applications.
Networks and heterogeneous media, 1:601–619, 2006.

[14] S. AMIN et al. Mobile century-using GPS mobile phones as traffic sensors: a field experiment. In 15th

World congress on ITS, New York, N.Y., November 16-20 2008. Intelligent Transport Systems.

[15] G. EVENSEN. Data Assimilation: The Ensemble Kalman Filter. Springer-Verlag, Berlin Heidelberg,
2007.

[16] H. FRANKOWSKA. Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations. SIAM
Journal of Control and Optimization, 31(1):257–272, 1993.

[17] M. C. GONZALEZ, C. A. HIDALGO, and A.-L. BARABASI. Understanding individual human mobility
patterns. Nature, 453:779–782, 2008.

[18] K. GREENE. A faster, more energy-efficient GPS: New software could help make location-aware
devices ubiquitous. MIT Technology Review (online),
http://www.technologyreview.com/Infotech/20781/?a=f, May 16th, 2008.

[19] A. HEGYI, B. DE SCHUTTER, and J. HELLENDOORN. Optimal coordination of variable speed limits
to suppress shock waves. IEEE Transactions on Intelligent Transportation Systems, 6(1):102–112,
March 2005.

[20] J.-C. HERRERA and A. M. BAYEN. Traffic flow reconstruction using mobile sensors and loop detector
data. In 87th TRB Annual Meeting, Washington D.C., Jan. 12-17 2008. Transportation Research Board.

[21] Z. JIA, C. CHEN, B. COIFMAN, and P. VARAIYA. The PeMS algorithms for accurate, real time esti-
mates of g-factors and speeds from single loop detectors. In IEEE Intelligent Transportation Systems
Conference Proceedings, pages 536–541, Oakland, CA, Aug. 2001.

[22] A. KRAUSE, E. HORVITZ, A. KANSAL, and F. ZHAO. Toward community sensing. In IPSN 2008,
International Conference on Information Processing in Sensor Networks, St. Louis, MI, Apr. 2008.

Proceedings of the Transportation Research Board (TRB), 2009 
Washington, DC, January 10-14, 2009 THIS IS NOT THE FINAL VERSION



REFERENCES 17

[23] J. M. LEWIS, S. LAKSHMIVARAHAN, and S. DHALL. Dynamic Data Assimilation: A Least Squares
Approach. Cambridge University Press, Cambridge, UK, 2006.

[24] M. J. LIGHTHILL and G. B. WHITHAM. On kinematic waves. II. A theory of traffic flow on long
crowded roads. Proceedings of the Royal Society of London, 229(1178):317–345, 1956.

[25] T. LOMAX and D. SCHRANK. Annual study shows traffic congestion worsening in cities large and
small. Press Release, Texas Transportation Institute, College Station, TX, Sep. 2007.

[26] J. E. MOORE, S. CHO, A. BASU, and D. B. MEZGER. Use of Los Angeles freeway service patrol
vehicles as probe vehicles. California Partners for Advanced Transit and Highways (PATH). Research
Report: UCB-ITS-PRR-2001-05. Technical report, Feb. 2005.

[27] L. MUNOZ, X. SUN, R. HOROWITZ, and L. ALVAREZ. Traffic density estimation with the cell trans-
mission model. In Proceedings of the 2003 American Control Conference, pages 3750–3755, Denver,
CO, June 2003.

[28] L. MUNOZ, X. SUN, R. HOROWITZ, and L. ALVAREZ. A piecewise-linearized cell transmission model
and parameter calibration methodology. In Proceedings of the Transportation Research Board (TRB)
85th Annual Meeting, Washington D.C., Jan. 22-26 2006.

[29] B. NAJAFI, K. AMINIAN, A. PARASCHIV-IONESCU, F. LOEW, C. BULA, and Ph. ROBERT. Ambula-
tory system for human motion analysis using a kinematic sensor: Monitoring of daily physical activity
in elderly. IEEE transactions on Biomedical Engineering, 50(6):711–723, 2003.

[30] G. F. NEWELL. A simplified theory of kinematic waves in highway traffic, part I: general theory.
Transporation Research B, 27B(4):281–287, 1993.

[31] G. F. NEWELL. A simplified theory of kinematic waves in highway traffic, Part (I), (II) and (III).
Transporation Research B, 27B(4):281–313, 1993.

[32] P. I. RICHARDS. Shock waves on the highway. Operations Research, 4(1):42–51, 1956.

[33] I. S. STRUB and A. M. BAYEN. Weak formulation of boundary conditions for scalar conservation laws.
International Journal of Robust and Nonlinear Control, 16:733–748, 2006.

[34] X. SUN and R. HOROWITZ. Localized switching ramp-metering control with queue length estimation
and regulation and microscopic simulation results. In Proceedings of the 16th IFAC World Congress,
Prague, Czech Republic, July 4-8 2005.

[35] X. SUN, L. MUNOZ, and R. HOROWITZ. Highway traffic state estimation using improved mixture
Kalman filters for effective ramp metering control. In Proceedings of the 42nd IEEE Conference on
Decision and Control, pages 6333–6338, Maui, HI, Dec. 2003.

[36] X. SUN, L. MUNOZ, and R. HOROWITZ. Methodological calibration of the cell transmission model.
In American Control Conference, Boston, MA, June 2004.

Proceedings of the Transportation Research Board (TRB), 2009 
Washington, DC, January 10-14, 2009 THIS IS NOT THE FINAL VERSION



REFERENCES 18

[37] Y. WANG and M. PAPAGEORGIOU. Real-time freeway traffic state estimation based on extended
Kalman filter: a general approach. Transportation Research Part B, 39(2):141–167, 2005.

[38] D. WORK, O.-P. TOSSAVAINEN, S. BLANDIN, A. M. BAYEN, T. IWUCHUKWU, and K. TRACTON. An
ensemble Kalman filtering approach to highway traffic estimation using GPS enabled mobile devices.
To appear in IEEE Conference on Decision and Control, 2008.

[39] D. WORK, O.-P. TOSSAVAINEN, Q. JACOBSON, and A. M. BAYEN. Distributed sensing with mo-
bile devices for traffic estimation on transportation networks. Submitted to Allerton Conference on
Communication, Control, and Computing, 2008.

[40] D. B. WORK, A. M. BAYEN, and Q. JACOBSON. Automotive cyber-physical systems in the context
of human mobility. In National Workshop on High-Confidence Automotive Cyber-Physical Systems,
Troy, MI, April 2008.

[41] http://traffic.berkeley.edu/.

[42] http://www.511.org/.

[43] http://maps.google.com/.

[44] http://www.inrix.com/.

[45] http://www.traffic.com/.

Proceedings of the Transportation Research Board (TRB), 2009 
Washington, DC, January 10-14, 2009 THIS IS NOT THE FINAL VERSION




