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Abstract

Le développement des métropoles a considérablement agrandi le parc de
véhicules urbains, provoquant de nombreuses inefficacités dans les transports.
Les feux de signalisation sont responsables de temps d’attente importants à
cause de leur interruptions brutales du trafic. Les coordonner est un moyen
de limiter leur impact sur le temps de parcours. Il est important de modèliser
le trafic urbain et l’influence des feux de signalisation sur celui-ci. Ce travail
étudie la pertinence d’un modèle d’approximation où les flots sortants de
l’intersection sont projetés sur un sous-espace, afin de maintenir le nombre
de paramètres représentant le trafic constant. Ce modèle a été mis en oeuvre
pour la synchronisation de deux puis d’une série de feux de signalisation. La
propagation d’une onde de voitures passant toutes les intersections au feu
vert s’est revelée optimale dans le cadre de cette étude. Plus que de retrou-
ver un resultat connu, ce modèle facilite analytiquement la transition entre
l’étude d’une intersection et d’une série d’intersections. Ce modèle de flots
peut être généralisé à d’autres problèmes de trafic urbain tel que l’estimation
d’un temps de parcours traversant une série de feux de signalisation.

Global urbanization creates a lot of inefficiencies in urban transportation,
by hugely increasing the number of cars in the major cities. Traffic lights are
responsible for important delays in arterial traffic because of their behaviour
disrupting the traffic flow. Travel times could be reduced by synchronizing
signals. To solve this problem, it is necessary to model efficiently the traffic
flow. This report presents a model of a projective intersection. The output
flow is projected on a subspace to keep constant the numbers of parameters
characterizing traffic flows. This model has been implemented to coordinate
two and several intersections. It showed a green wave - where all vehicles go
through the intersections during the green time - is optimal. In addition to
this known result, the transition between the study of one and several inter-
section is easy thanks to the model. Such a model of traffic flow is general
and can be implemented for other situations such as travel time estimation.
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Chapter 1

Preliminaries

Since the increase of the number of personal vehicles, traffic jams and ineffi-
ciencies are common in the major cities. Even though it is hard to measure
its real impact, traffic congestion is the cause of a lot of air pollution. More-
over, according to the Victoria Transport Policy Institute [8], congestion cost
is about 0.13 US$ per vehicle mile for an average car. The Texas Transporta-
tion Institute [13] estimates that American car drivers have lost 4.2 billion
hours in 2007 because of congestion.

These inefficiencies must be reduced by improving arterial traffic manage-
ment. Urban traffic flows are hard to model because of the huge number of
parameters it needs to be described and because of the intrinsic complexity
of a network. As traffic lights cause part of the congestions, the model of
traffic flow presented in this work is designed to study the evolution of traffic
flows through signalized intersections.

1.1 Fundamental diagram

In this work, we will use common assumptions about traffic flow theory. The
traffic flow is represented by macroscopic variables of flow q(x, t), density
ρ(x, t) and velocity v(x, t). Like in mechanics, we have the relation coming
from the definition of flow [7, 10]:

∀x, t ∈ R, q(x, t) = ρ(x, t)v(x, t) (1.1)

For low values of density, the velocity remains constant and does not depend
on flow and density. This velocity is called free flow speed vf . Nevertheless,
after the density reaches a particular value, the critical density ρc, vehicles
cannot drive at the free flow speed anymore and the flow thus decreases from
its maximal value qmax until zero reached at the maximal density ρmax.
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Figure 1.1: The triangular fundamental diagram

The maximal density can be thought physically as the maximum amount
of vehicles that can fit in the road. All these assumptions derived from
experimental data are summarized in the fundamental diagram (FD) [2]
illustrated in the figure 1.1, which is in this model assumed to be triangu-
lar. This assumption makes the right part of the FD linear with a slope ω
corresponding to the congested wave speed.

1.2 Implementation to signalized intersections

In the following, we will apply these assumptions to model traffic flows at
intersections equipped with traffic lights.

The California Center for Innovative Transportation [1] has been able to
study an intersection using the fundamental diagram and to represent vehi-
cles trajectories on a space time diagram like the one in the figure 1.2. Two
discrete regimes appear in this model, the undersaturated one in which some
vehicles go through the intersection without stopping and the congested one
in which every vehicle stops at least once before going through the intersec-
tion.

The interesting fact in this diagram we will focus on in the following is the
structure of the output flow. We have three different platoons, one without
any vehicles during the red time, one with a flow at critical density ρc during
the queue discharge lasting a time θc, and one at the arriving density during
the extra green time.
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θc

Figure 1.2: Space time diagram of vehicles trajectories under uniform arrivals
of density ρa for an undersaturated regime
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Chapter 2

Intersection seen as a system

2.1 Introduction to the model

We model intersections as a a system in which the input is the flow of ve-
hicles arriving on a link and the output is the flow of vehicles leaving the
link. Inputs and outputs are characterized by platoons of vehicles, defined
by a density ρi and a duration Ti. Given the behaviour of the output of a
single intersection in a general case, and the fact we want to study several
intersections following each other, we choose to limit the structure of our in-
put to three different platoons representing the red light duration, the queue
discharge, and the extra green time of the previous intersection. As the ex-
tra green time does not have any constraints, it is not a platoon in general.
However, to get a constant density, we average it. Although this seem an
important approximation, it can be justified using Robertson’s dispersion
model [11] and the interaction between two platoons of different character-
istics [5] making those two merging after some time. A balance equation
allows to take the average to get the resulting density.

2.2 Notations and basic computations

Let’s introduce some notations. ρc is the critical density introduced in the
preliminaries and θc is the duration of the queue discharge we will compute
explicitly later. R is the duration of the red light for this intersection. Given
all these elements, we can compute the average density ρf of the last platoon
using a balance equation :

3∑
i=1

ρiTi = ρcθc + ρf (C −R− θc)
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=⇒ ρf =

3∑
i=1

ρiTi − ρcθc

C −R− θc
(2.1)

2.3 Characterization of the output platoons

Behaviour of a platoon through an intersection Each input platoon
can only be confronted to four cases. Let’s consider these cases for any
platoon of density ρi and duration Ti.

Case 1. The entire platoon goes through the intersection during a green light
period. The output platoon is of density ρi and of duration Ti.

Case 2. The beginning of the platoon goes through the intersection during a
green light period but some vehicles at the end of the platoon stop
at the red light. Let’s notice that this case can only occur once in a
cycle. The platoon is thus split in two parts, one of duration αTi and
another of duration (1− α)Ti. The corresponding output is a platoon
of density ρi and of duration αTi followed by a platoon of density ρc
and of duration (1− α)Ti

ρi
ρc

(obtained from a balance equation). This
case is illustrated in the figure 2.1.

Case 3. All the vehicles of the platoon stop at the red light. The output pla-
toon comes from the partial queue discharge and its duration is Ti

ρi
ρc

(obtained from the same balance equation).

Case 4. The first vehicles of the platoon stop at the red light but the last ones
go through the intersection without stopping. The output is the same
as the one in Case 2, except that α represents the second part of the
platoon, not the first. Again this case can only happen once in a cycle.
This case is illustrated in the figure 2.2.

Let’s consider the first car of the platoon i stops and waits during a time
∆. Then, the delay experienced by the following cars is growing linearly.
Indeed, expressions derived from the Rankine-Hugoniot [3] jump conditions
showed the speed of formation vi and dissolution ω of the queue are constant
for each platoon i :

vi =
ρivf

ρmax − ρi
and ω =

ρcvf
ρmax − ρc

(2.2)
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∆

Ti

Ti
ρi
ρc

∆last

Figure 2.1: The platoon has a
too small duration to generate
a whole triangle.

Ti

∆ θc

Figure 2.2: The platoon lasts
enough time to generate a
whole triangular queue.

Thus, the time ∆last the last car of the platoon waits depends only on
∆ and the characteristics of this platoon. We derive from a time balance
equation illustrated in the figure 2.1:

∆last = ∆− Ti(1−
ρi
ρc

) (2.3)

However, this does not hold anymore if the last car of the platoon goes
through the intersection without stopping. The previous case happens if and
only if Ti ≤ ∆ + θc ⇔ ∆last ≤ 0 as in the figure 2.2.

Computation of the output platoons in a general case After these
primary results, let’s consider a cycle starting with the red period and charac-
terize the durations and densities of the output platoons given the durations
and the densities of the input platoons. We denote by 1 the index of the
platoon which hits the red light at the beginning of the cycle. Note that we
can always choose a cyclic permutation on the indices of the input platoons
and that this notation does not limit the generality of our results.

The first platoon is split as described in the second case with α depending
on the offset between the beginning of the red cycle and the beginning of the
first platoon. In a more general case, it corresponds to the offset between
this traffic light and the previous one. Although the delay experienced is R ,
we will do the derivations with ∆ for the sake of generality. So the output is
either given by Case 2 or Case 4 corresponding to this first platoon. We sum
up this case by introducing τ1 = max(0,∆ ρc

ρc−ρ1 ), which is the duration of the
fraction of the first platoon in which vehicles stop at the red light. Then the
output is a first platoon of density ρc and of duration min(αT1, τ1)ρ1

ρc
followed

by a second platoon of density ρ2 and of duration max(0, T1 − τ1).
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The τs are introduces for the three input platoons but ∆ changes every
time according to the computation from last paragraph.

We summarize now the effect of such an intersection :


(ρ1, T1)

(ρ2, T2)

(ρ3, T3)

 7−→



(
0, R

)(
ρc,min(αT1, τ1)ρ1

ρc

)(
ρ1,max(0, αT1 − τ1)

)(
ρc,min(T2, τ2)ρ2

ρc

)(
ρ2,max(0, T2 − τ2)

)(
ρc,min(T3, τ3)ρ3

ρc

)(
ρ3,max(0, T3 − τ3)

)(
ρc,min((1− α)T1, τ4)ρ1

ρc

)(
ρ1,max(0, (1− α)T1 − τ4)

)



(2.4)

with

• τ1 = R
ρc

ρc − ρ1

• τ2 = max
(

0, R− αT1(1− ρ1
ρc

)
) ρc
ρc − ρ2

• τ3 = max
(

0, R− αT1(1− ρ1
ρc

)− T2(1− ρ2
ρc

)
) ρc
ρc − ρ3

• τ4 = max
(

0, R− αT1(1− ρ1
ρc

)− T2(1− ρ2
ρc

)− T3(1− ρ3
ρc

)
) ρc
ρc − ρ1

For now, there is no contribution in the traffic from the side streets.
Nevertheless, it will be included later with a density ρcross representing the
incoming flow during the red light and the parameter ε representing the
turning ratio during the green time.

Output platoons in an averaging intersection system This charac-
terizes the system and thus we can average to get only three platoons as an
output.


(ρ1, T1)

(ρ2, T2)

(ρ3, T3)

 7−→


(
0, R

)(
ρc, θc

)(
ρf , C −R− θc

)
 (2.5)
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(0, R)

(ρ1, T1) (ρ2, T2) (ρ3, T3)

(ρc, T1
ρ1

ρc
) (ρc, τ2

ρ2

ρc
)

(ρ2, T2 − τ2)

(ρ3, T3)

Figure 2.3: Example of output platoons in a space-time diagram referring to
the formula (2.4)

with

• θc = min(αT1, τ1)ρ1
ρc

+min(T2, τ2)ρ2
ρc

+min(T3, τ3)ρ3
ρc

+min((1−α)T1, τ4)ρ1
ρc

the duration of the queue discharge

• ρf the merging density which only depends on θc and the parameters
of the intersection as computed in (2.1)
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Chapter 3

Optimization of a two traffic
lights system

3.1 Computation of the cost function

Choice of the cost function We want to optimize the vehicle flow through
two intersections. We decided to choose as a cost function the total delay
Γ experienced at the second red light by all the vehicles going through the
intersections.

Γ =
∑

vehicles

Wk (3.1)

where Wk is the waiting time experienced by the car k at the second red
light.

We take such a cost function because it appears to be the most fair from a
social point of view, in the sense we do not choose to make some vehicles wait
a long time in order to make some vehicles going through without stopping.
Other choices are possible such as maximize the number of vehicles going
through without stopping or minimize the maximal delay experienced but
did not seem as socially fair as the one we chose.

Let’s start with computing this cost function, using the previous results
and assuming that the platoons are coming from an upstream intersection,
giving the input this particular three-platoons structure.

Computation for a single platoon As shown in (2.2), the delay is grow-
ing linearly inside a platoon. So, the total delay for the platoon only depends
on the delays experienced by the first car and the last car. These delays cor-
respond to the actual ∆ and ∆last mentioned in (2.3). We thus define the ∆i

coming from the expressions of the τi and illustrated by the figure 3.1:
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• ∆1 = R

• ∆2 = max
(

0, R− αT1(1− ρ1
ρc

)
)

• ∆3 = max
(

0, R− αT1(1− ρ1
ρc

)− T2(1− ρ2
ρc

)
)

• ∆4 = max
(

0, R− αT1(1− ρ1
ρc

)− T2(1− ρ2
ρc

)− T3(1− ρ3
ρc

)
)

• ∆5 = max
(

0, R− T1(1− ρ1
ρc

)− T2(1− ρ2
ρc

)− T3(1− ρ3
ρc

)
)

∆1

∆2

∆3

∆4

∆5

(1− α)T1 T2 T3 αT1

Figure 3.1: Waiting times of the first and last cars of each platoon

The total delay experienced by the vehicles of a platoon is the average
delay of the stopping vehicles times the number of stopping vehicles. The
duration of the platoon containing stopping vehicles is either the duration Ti
of the platoon or the duration τi of the part of the platoon which is actually
experiencing some delay.
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Dependence on the control variables The only parameters we control
in order to get our optimization is the duration of the red light and the
offset between the two traffic lights. However, it is not relevant to minimize
according to the duration of the red light because, without any constraints,
the optimal value is null. We can only control the actual offset Θ between the
two traffic lights. We introduce the standardized offset t0 = Θ − L

vf
, which

takes into account the time vehicles take to go from the upstream intersection
to the downstream one. Here, L represents the length of the link between
the two intersections.

The standardized offset can be introduced in the expression of the cost
function (3.2) by noticing that t0 = (1 − α)T1, which gives us the explicit
dependence of the total delay on t0. The implicit one is the cyclic permutation
between the platoons depending on which interval the offset belongs to.

Expression of the total delay Then, assuming all the hypothesis made
previously, we derive the expression of the total delay Γ :

Γ = ρ1 min(τ1, T1 − t0)
∆1 + ∆2

2
+ ρ2 min(τ2, T2)

∆2 + ∆3

2

+ ρ3 min(τ3, T3)
∆3 + ∆4

2
+ ρ1 min(τ4, t0)

∆4 + ∆5

2
(3.2)

Let’s notice that this expression still holds in the case of a congested
regime.

Remark. The real total delay would be in fact vfΓ, where vf is the free flow
velocity, but as it is a constant, minimizing the total delay is equivalent to
minimizing Γ.

3.2 Study of the convexity of the cost func-

tion

Particular structure of the cost function For this paragraph, we take
the following convention, T̃1 = αT1 = T1−t0, T̃4 = (1−α)T1 = t0 and ρ4 = ρ1

to simplify the notations in the equations. Not to get confused, we denote
also T2 and T3 respectively by T̃2 and T̃3.

Moreover, we have ∀i, τi 6 τi−1 i.e. the τis are decreasing. Especially,
once one is null, the followings are null too. The same results apply for the

∆s because τi =
ρc

ρc − ρi
∆i, which means that τi ans ∆i are simultaneously

equal to 0.
Now, we derive some properties of the cost function.
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Property 1. In an undersaturated regime, ∀t0, ∃!k ∈ {1, . . . , 4} such that

0 < τk 6 T̃k.
We thus derive a new expression for the cost function :

Γ =
k−1∑
i=1

ρiT̃i
∆i + ∆i+1

2
+ ρk

ρc
ρc − ρk

∆2
k

2
(3.3)

Proof. Let’s assume such a k exists, then :

τk > 0 ⇐⇒ R−
k−1∑
i=1

T̃i(1−
ρi
ρc

) > 0

⇐⇒ R−
k−2∑
i=1

T̃i(1−
ρi
ρc

) > T̃k−1(1− ρk−1

ρc
)

⇐⇒ τk−1 > T̃k−1

This implies τk−1 > 0 and we derive by induction that ∀j < k, τj > Tj.
We also have :

τk 6 T̃k ⇐⇒
ρc

ρc − ρk

(
R−

k−1∑
i=1

T̃i(1−
ρi
ρc

)

)
6 T̃k

⇐⇒ R−
k−1∑
i=1

T̃i(1−
ρi
ρc

) 6 T̃k(1−
ρk
ρc

)

⇐⇒ R−
k∑
i=1

T̃i(1−
ρi
ρc

) 6 0

⇐⇒ τk+1 6 0

This implies τk+1 6 T̃k+1 and we derive by induction that ∀j > k, τj 6 0.
This shows that if such a k exists, it is unique. We will demonstrate now

its existence.
Let j = max{q ∈ {1, . . . , 4}|τq > T̃q}. This set is bounded because, if the

regime is undersaturated, τ4 6 t0, so j exists. As shown earlier, τj > T̃j ⇒
τj+1 > 0 and τj+1 6 T̃j+1, otherwise j is not the maximum of the set. This
shows the existence of this index k.

Remark. The index k depends on t0 but is piecewise constant. So if we
study the cost function over the right interval, this expression of Γ holds.
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Physically, k represents the index of the first platoon in which some vehicles
go through the intersection without stopping. Moreover, the expression holds
in the case of a congested regime, with k = 5 and the convention ρ5 = 0.

Property 2. Γ is piecewise quadratic with respect to t0.

Proof. We study the cost function over an interval where k is constant. We
thus use the expression computed in the property (1). The variable t0 appears

there in the ∆i linearly and in T̃1 linearly too. T̃4 never appears in the
equation.

So, all the terms of the sum from 2 to k − 1 are linear in t0. The first
term of the sum is in t20, so is the last term of the expression. Therefore, Γ
can be rewritten as at20 + bt0 + c on each interval where k is constant.

After computation, we get :

a =
(ρc − ρ1)(ρk − ρ1)

2(ρc − ρk)
(3.4)

b = −Rρc(ρ1 − ρk)−
∑k−1

i=1 Ti(ρc − ρ1)(ρi − ρk)
ρc − ρk

(3.5)

and the optimum (either a minimum or a maximum according to the sign of
a) is reached in :

− b

2a
=

k−1∑
i=1

Ti
ρk − ρi
ρk − ρ1

−R ρc
ρc − ρ1

(3.6)

Remark. In these equations, T1 is now referring to the real duration of the
first platoon and this is why we don’t use T̃1 anymore.

Study of the variations of the cost function Since Γ is piecewise
quadratic, we study its monotony on each interval where k is constant in
order to determine where the global optimum is. Such a study leads to the
following property.

Property 3. If we choose 0 as the beginning of the platoon with the highest
density, Γ is a quasi-convex function.

Proof. We study the monotony of Γ over each interval corresponding to a
platoon - i.e. over [0, T1], [T1, T1 + T2], [T1 + T2, C]. In this case, the densities
ρi are fixed, but k is not. Nevertheless, it can only increase. We study the
variations of Γ to prove the global shape of the function is decreasing then
increasing with sometimes an interval over which the function is constant.
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• First interval : ρ1 = maxi ρi

– k = 1 : In this case, we have the coefficients a and b that are null,
Γ is thus constant.

– k = 2 : We have

− b

2a
= T1 −R

ρc
ρc − ρ1

and we know that

τ2 > 0 ⇐⇒ R− (T1 − t0)(1− ρ1

ρc
) > 0

⇐⇒ t0 > T1 −R
ρc

ρc − ρ1

⇐⇒ t0 > −
b

2a

Thus we only have the right side of the parabola. This side may be
increasing or decreasing according to the sign of a. We can derive
from (3.4) that a has the same sign as (ρk − ρ1), here nonpositive
because ρ1 is the highest density, so Γ is decreasing.

– k = 3 : We have

− b

2a
= T1 + T2

ρ3 − ρ2

ρ3 − ρ1

−R ρc
ρc − ρ1

which is not related to the condition τ3 > 0. However, we derive
from this condition a lower bound for t0 :

τ3 > 0 ⇐⇒ R− T1(1− ρ1

ρc
)− T2(1− ρ2

ρc
) + t0(1− ρ1

ρc
) > 0

⇐⇒ t0 > T1 + T2
ρc − ρ2

ρc − ρ1

−R ρc
ρc − ρ1

This lower bound tmin is less than − b

2a
and thus we still have only

one side of the parabola.

tmin +
b

2a
= T2

ρc − ρ2

ρc − ρ1

− T2
ρ3 − ρ2

ρ3 − ρ1

= T2
(ρc − ρ3)(ρ2 − ρ1)

(ρc − ρ1)(ρ3 − ρ1)

> 0 as ρ1 is the highest density

17



So we actually still have the right side of the parabola, and a is
still nonpositive, meaning Γ is decreasing.

– k = 4 : In this case, as ρk = ρ1, we have a = 0 and b =∑3
i=1 Ti(ρi − ρ1) which is negative as ρ1 is the highest density.

So Γ is decreasing.

In any case, if ρ1 = ρc, we have a = 0 and Γ is linear with a negative
slope −Rρc.
To conclude, Γ is nonincreasing over the interval [0;T1].

• Second interval : ρ1 = mini ρi

– k = 1 : Idem as the first interval, Γ is constant.

– k = 2 : For the same reason as previously, we only have the right
side of the parabola. Nevertheless, this time a is nonnegative as
ρ1 is the lowest density, so Γ is increasing.

– k = 3 : Although ρ1 is now the lowest density, the condition

tmin +
b

2a
> 0 holds because the sign of two factors have changed

at the same time and the other factors keep their sign. So we still
have the right side of the parabola and Γ is increasing.

– k = 4 : For the same reason as previously, Γ is linear and the sign
of the slope is positive, meaning Γ is increasing.

Here we can’t have ρ1 = ρc, else all the ρi would be equal to ρc and the
queue could never be discharged.

To conclude, Γ is increasing over the interval corresponding to ρ1 as
the lowest density.

• Last interval : ρ1 is neither the highest nor the lowest density

– k = 1 : Γ is still constant in this case.

– k = 2 : We still have the right side of the parabola. The sign of a
is the sign of (ρ2−ρ1) which is the same sign as (ρ2−ρ3) because ρ1

is the intermediate density. Moreover (ρ2− ρ3) is the sign of a for
the previous interval (because of the cyclic permutation we applied
when we changed intervals), so Γ will have the same monotony as it
has over the previous interval. The previous interval corresponds
to the platoon indexed 3 for the study of this interval.
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– k = 3 : Here, tmin +
b

2a
6 0 as ρ1 is the intermediate density.

So we do have the optimum in the parabola unless this optimum
is reached after the upper bound of t0. The upper bound of t0 is
given by :

τ3 6 T3 ⇐⇒ R− T1(1− ρ1

ρc
)− T2(1− ρ2

ρc
) + t0(1− ρ1

ρc
) 6 T3(1− ρ3

ρc
)

⇐⇒ t0 6 T1 + T2
ρc − ρ2

ρc − ρ1

+ T3
ρc − ρ3

ρc − ρ1

−R ρc
ρc − ρ1

Let’s compare this upper bound tmax with where the optimum is
reached.

− b

2a
− tmax = − b

2a
− tmin − T3

ρc − ρ3

ρc − ρ1

= T2
(ρc − ρ3)(ρ1 − ρ2)

(ρc − ρ1)(ρ3 − ρ1)
− T3

ρc − ρ3

ρc − ρ1

=
ρc − ρ3

ρc − ρ1

(
T2(ρ1 − ρ2)− T3(ρ3 − ρ1)

ρ3 − ρ1

)
=

ρc − ρ3

ρc − ρ1

(
Cρ1 −

∑3
i=1 ρiTi

ρ3 − ρ1

)

We derive two conditions from this expression for the optimum of
the parabola not to be reached.

if

{
ρ3 > ρ1

ρ1 >
1

C

∑3
i=1 ρiTi

or

{
ρ3 < ρ1

ρ1 <
1

C

∑3
i=1 ρiTi

(3.7)

We have the left side of the parabola and a has the sign of (ρ3−ρ1).

If those two conditions are not fulfilled, we have the optimum of
the parabola.

If ρ3 > ρ1, we have a minimum, but it also means that ρ3 is the
highest value and thus, over the interval corresponding to ρ3 (in
fact the one prior to the one we are studying), Γ is decreasing. So,
there is still one minimum.

Else, we have a maximum, but ρ3 is now the lowest value and thus
Γ was increasing over the previous interval.

– k = 4 : Γ is linear with a slope of same sign as
1

C

∑3
i=1 ρiTi − ρ1.
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To conclude, if Γ is monotonous over this interval, we have a point c where Γ
is nonincreasing ∀t0 6 c and nondecreasing ∀t0 > c. Given the results of the
case k = 3, this holds when Γ is not monotonous over this interval. We can
even notice that, if k is increasing over this interval, the condition still holds.
Only one exception appears, when we got the maximum of the parabola over
the interval, we have to do the right translation (as Γ is periodic) to make
this hold.

Thus, if we choose the value where t0 = 0 as the beginning of the platoon
with the highest density or as the maximum of the parabola when this one
appears, Γ is a quasi-convex function over the interval [0;C].

3.3 Identification of the different scenarios

As we know the variations of Γ over [0;C], we are able to find analytically the
optimal control to apply. We notice two families of solutions depending on
the parameters, the corner solutions where t0 is at the beginning of a platoon
and the solutions inside an interval. These solutions are only in the interval
corresponding to the intermediate density, according to the previous results.
From now, we will index this intermediate density by 1. The optimal t0 will
be noted t∗0.

Then, we want to study several consecutive intersections. As optimizing
the whole sum of all the cost functions for each intersection is a hard problem,
we try to optimize each intersection at a time and see, given the output
platoons after applying the optimal control, which control is to be applied at
the downstream intersection. A scenario is unstable if the scenario reached
for the next intersection is different from the initial one. In other terms, a
scenario is considered unstable when the solution jumps from a scenario to
another after an intersection. On the contrary, a scenario is stationary if we
apply the same optimal control for all the following downstream intersections.

We will try in this paragraph to identify the conditions for each solution
to occur and to see if these conditions hold for the next intersection, making
this scenario stationary.

The solution t∗0 6∈ [0;T1] : This solution occurs if and only if ρ2 > ρ1 > ρ3,
and then t∗0 = T1 + T2. This solution is considered as a corner solution. It
means a platoon is chosen such that its first car will hit the traffic light
exactly when it starts its red time. The optimization shows that this platoon
is the one with the lowest density. This result is intuitive because the vehicles
who stop first will wait the longest, so, to minimize the delay, they should
be in a platoon where vehicles are far away from each other. Furthermore,
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in this case, the platoon with the highest density is at the end and will more
likely not stop at the intersection or, if some vehicles stop, they will not wait
very long.

ρ2 ρ3 ρ1

Delay

Offset

(ρ1, T1)(ρ2, T2)(ρ3, T3)

Space

Time

Figure 3.2: Example of a case in which t∗0 6∈ [0;T1] with : ρ1 = 0.05, ρ2 =
0.08, ρ3 = 0.02, T1 = 30, T2 = 40, T3 = 30, C = 100, R = 45, ρc = 0.1

We can see the output platoons are (ρcross, R), (ρc(1−ε), θc), (ρf (1−ε), C−
R− θc), with ε some noise expected to model the ratio of vehicles turning at
this intersection. If we consider this road as a main street, we have ε � 1
and ρcross � ρ̄ where ρ̄ = 1

C

∑3
k=1 ρiTi is the average density of the input

traffic flows. We derive the new conditions on the input for the downstream
intersection : ρ3 > ρ1 > ρ2. The initial conditions are not fulfilled anymore,
making this scenario unstable.

The solution t∗0 ∈]0;T1[ : This is the only case in which the solution is not
a corner solution. The first platoon, with the intermediate density, is split
in two parts as illustrated in the figure 3.3. This seems optimal because if
more vehicles from the first platoon wait at the red light (offset increasing),
it will not be compensated by the important number of vehicles from the
third platoon - with the highest density - which had to wait only a short
time. On the other hand, if less vehicles from the first platoon wait at the
red light (offset decreasing), it will be overcompensated by a lot of vehicles
from the third platoon - with the highest density - which would have to wait
longer. This is thus a trade-off between a few cars which wait long and a lot
of cars which wait a short time.
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This solution occurs if and only if the regime is undersaturated and
ρ2 6 ρ1 6 ρ̄ 6 ρ3

T2 6 R
ρc

ρc − ρ2
R

C
6

(ρ3 − ρ̄)(ρc − ρ1)

ρc(ρ3 − ρ1)

(3.8)

Then t∗0 = T1 + T2
ρ3 − ρ2

ρ3 − ρ1

−R ρc
ρc − ρ1

ρ3 ρ1 ρ2

t∗0

Delay

Offset

(ρ1, T1 − t∗0)(ρ2, T2)(ρ3, T3)(ρ1, t
∗
0)

Space

Time

Figure 3.3: Example of a case in which t∗0 ∈]0;T1[ with : ρ1 = 0.04, ρ2 =
0.02, ρ3 = 0.08, T1 = 30, T2 = 30, T3 = 40, C = 100, R = 36, ρc = 0.1

After computation, we have the following output platoons :

(ρcross, R), (ρc(1− ε), R
ρ1

ρc − ρ1

), (ρf (1− ε), C −R
ρc

ρc − ρ1

)

where

ρf =
ρ̄C − ρ1R

ρc
ρc−ρ1

C −R ρc
ρc−ρ1

= ρ̄+
(ρ̄− ρ1)R ρc

ρc−ρ1
C −R ρc

ρc−ρ1
> ρ̄

Thus, with the hypothesis of this road as a main street, we can see that
the condition ρ3 > ρ1 > ρ2 (i.e. ρc(1− ε) > ρf (1− ε) > ρcross)holds. As the
perturbations are very small, we consider at the first order that the number
of vehicles is conserved, meaning the ρ̄ from the downstream intersection is
equal to one from the upstream intersection. So, as ρf is the new intermediate
density, we do not have ρ1 6 ρ̄ anymore. This scenario is also unstable.
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The solution is t∗0 = 0 : This solution is a corner solution too. The platoon
with the highest density is in the last position not to make a lot of vehicles
wait very long. However, the first platoon, which has the intermediate density
must not have a too high density - it must remain under the average density
ρ̄ - because its vehicles wait the longest. If the density of the first platoon is
too important, it is not profitable to make its vehicles waiting a long time.

This solution occurs if and only if

{
The regime is congested
ρ2 6 ρ1 6 ρ̄ 6 ρ3

or



The regime is undersaturated
ρ2 6 ρ1 6 ρ̄ 6 ρ3

T2 6 R
ρc

ρc − ρ2
R

C
>

(ρ3 − ρ̄)(ρc − ρ1)

ρc(ρ3 − ρ1)

As an output of a congested regime, we only have two platoons in the
case of the figure 3.4, it is thus hard to determine at which scenario they
belong, as the density ρ1 of the platoon of null duration can have any value,
because it is then multiplied by 0 in the equations. It is impossible to say if
ρ1 is the highest, lowest or intermediate density. Nevertheless, if we consider
it as the intermediate density, what we implicitly did by calling it ρ1, the
solution of the downstream intersection is either 0 or T1 depending on which
is higher between ρ̄ and ρ1. It actually does not matter because T1 = 0. For
reasons we will see later, let’s say it would switch to the scenario with the
solution T1.

ρ3 ρ1 ρ2
Delay

Offset

(ρ1, T1)(ρ2, T2)(ρ3, T3)

Space

Time

Figure 3.4: Example of a case in which t∗0 = 0 with : ρ1 = 0.04, ρ2 =
0.02, ρ3 = 0.08, T1 = 30, T2 = 30, T3 = 40, C = 100, R = 55, ρc = 0.1

In the case of the figure 3.5, the only platoon going through the intersec-
tion during the extra green time is the third one and thus ρf = ρ3. With
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the hypothesis of this road as a main street, ρf should be considered as the
intermediate density for the next intersection and ρ3 > ρ̄ according to the
initials conditions and the conservation of the number of vehicles (at the first
order of the approximation).We conclude this case is unstable too.

ρ3 ρ1 ρ2Delay

Offset

(ρ1, T1)(ρ2, T2) (ρ3, T3)

Space

Time

Figure 3.5: Example of a case in which t∗0 = 0 with : ρ1 = 0.04, ρ2 =
0.02, ρ3 = 0.08, T1 = 10, T2 = 40, T3 = 50, C = 100, R = 42, ρc = 0.1

The solution is T1 : This corner solution occurs because the second con-
dition expects the second platoon to go through the intersection without
stopping. The best choice is thus to make the platoon with the lowest den-
sity wait at the red light. It does not have any consequences on the other
platoons.

This solution occurs if and only if{
ρ3 > ρ̄ > ρ1 > ρ2

T2 > R
ρc

ρc − ρ− 2
or ρ3 > ρ1 > ρ̄ > ρ2

In the case of the figure 3.6, the only platoon hitting the red light is the
second one. So, we compute ρf :
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ρ3 ρ1 ρ2Delay

Offset

(ρ2, T2)(ρ3, T3) (ρ1, T1)

Space

Time

Figure 3.6: Example of a case in which t∗0 = T1 with : ρ1 = 0.04, ρ2 =
0.02, ρ3 = 0.08, T1 = 30, T2 = 30, T3 = 40, C = 100, R = 20, ρc = 0.1

ρf =
ρ2(T2 − τ2) + ρ3T3 + ρ1T1

C −R ρc
ρc−ρ2

=
ρ̄C − ρ2R

ρc
ρc−ρ2

C −R ρc
ρc−ρ2

= ρ̄+
(ρ̄− ρ2) ρc

ρc−ρ2
C −R ρc

ρc−ρ2
> ρ̄

As ρf is the intermediate density for the next intersection, the condition
ρ1 6 ρ̄ does not hold and we change the scenario.

In the case of the figure 3.7, we check all the cases depending on the value
of k at the optimum. After computing all the values of ρf for these different
cases, we still have the condition ρ3 > ρ1 > ρ̄ > ρ2 for the next intersection.
So, this scenario is stationary.

Link between the scenarios Now that we have identified all the possible
scenarios, we study the interactions between them and the transitions from
one to another.

The green arrows on the figure 3.3 mean that this is not a compulsory
path, but the real path taken depends on several parameters. Nevertheless,
we can see some kind of attractor in the left bottom of the figure, where all
the scenarios converge after a finite number of iterations.

Physically, this attractor corresponds to what is called a green wave[4]. A
green wave is a flow of vehicles going through a series of intersections without
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ρ3 ρ1 ρ2

Delay

Offset

(ρ2, T2) (ρ1, T1)(ρ3, T3)

Space

Time

Figure 3.7: Example of a case in which t∗0 = T1 with : ρ1 = 0.05, ρ2 =
0.02, ρ3 = 0.08, T1 = 30, T2 = 50, T3 = 20, C = 100, R = 45, ρc = 0.1

stopping at any red light. Here, we are converging to a green wave because,
at each intersection, we have as an output a platoon with few vehicles, cor-
responding to the red light, and thus as the number of vehicles is conserved,
two other platoons with a density increasing after each traffic light crossed,
until it reached the critical density ρc.

In such a green wave, the platoon is so tight that it goes through the
intersection during the green time without any vehicle stopping. This is
possible as long as the regime is undersaturated, meaning the duration of
the single platoon at critical density must be less than the green time of the
intersection. This minimum, expected to be local because we only optimize
each intersection at a time and not the entire set of intersections at once, is
actually a global minimum because the cost function is null, it is not possible
to do better. If the regime is congested, it is still optimal to do a green wave
from a local point of view, but it is not sure if we optimize globally.

However, this green wave is not the ideal solution for synchronizing traffic
lights because it is very sensitive to external conditions. Indeed, vehicles are
really close to one another, so one small incident on the road, such as a
pedestrian crossing the road while he was not supposed to, will cause a huge
amount of delay reflecting on all the vehicles behind.

To improve this situation, we can choose to apply this optimal control in
real-time. If we were able to know the traffic conditions at the downstream
intersection with sensors for instance, we could decide to apply the right
control and thus anticipate an incident which would have disrupted the green
wave. This idea of real-time control traffic has already been studied with real-
time computations [6, 9, 12]. Here, the choice is decided with comparisons
between parameters, the time of computation is thus really short.

Although this model does not hold when the traffic from the side streets
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SOL 6∈ [0;T1]

SOL ∈]0;T1[

SOL = 0

ρ2 > ρ1 > ρ3

Undersaturated regime
ρ2 6 ρ1 6 ρ̄ 6 ρ3

T2 6 R
ρc

ρc − ρ2
R

C
6

(ρ3 − ρ̄)(ρc − ρ1)

ρc(ρ3 − ρ1)

SOL = T1

Regime congested
ρ2 6 ρ1 6 ρ̄ 6 ρ3

Undersaturated regime
ρ2 6 ρ1 6 ρ̄ 6 ρ3

T2 6 R
ρc

ρc − ρ2
R

C
>

(ρ3 − ρ̄)(ρc − ρ1)

ρc(ρ3 − ρ1)

ρ2 6 ρ1 6 ρ̄ 6 ρ3

T2 > R
ρc

ρc − ρ2

ρ2 6 ρ̄ 6 ρ1 6 ρ3
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become important, a real-time control using sensors could work in such a
case, because it would measure the output of an intersection and transmit to
the upstream intersection what is its input. Given the input, the traffic light
is able to apply the optimal control using the diagram on page 27. A limit
for this is the time of computation, the sensors need the last car to leave the
intersection before sending the data while the first car of the flow might have
reached the next intersection before. The length of the link must not be too
short then or we would have to figure out a way of measuring the densities
with a small amount of data. This also assumes a huge investment at first
because all the intersections should be equipped with sensors.
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Chapter 4

Optimization taking into
account the two ways of the
traffic

4.1 Context of the situation

Definition of the new cost function We saw earlier that optimizing
one way of the traffic amounts to creating a green wave spreading along the
traffic lights. This fact is due to the relative absence of constraints in our
optimization problem. This absence of constraints is not realistic because
the opposite direction of the traffic could be stuck without affecting the
cost function from our previous model. A natural constraint to be added is a
minimum flow on the opposite direction of the traffic, which can be translated
by a maximum waiting time at the red lights. If we define ΓNorthway and
ΓSouthway respectively as the total delay for the way heading north and the
total delay for the way heading south, we write this constraint : ΓSouthway <
H where H is arbitrarily chosen depending on how much flow we chose to
have on the other direction.

The problem is expressed in the same way than the previous one. We still
have two red lights and the decision variable is the offset Θ, absolute this
time. We cannot reduce the offset to a relative one as previously because the
offset in the two directions are opposite. The figure 4.1 shows the described
situation. The optimization program is thus the following:

min
Θ∈[0;C]

ΓNorthway

s.t. ΓSouthway < H
(4.1)

We use Lagrangian multipliers to get rid of the constraint, and it gives
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t = 0

t = 0

t = Θ

t = Θ

RN

RS

the dual problem :

max
λ>0

min
Θ∈[0;C]

ΓNorthway + λΓSouthway (4.2)

So, the main problem is to minimize a weighted sum of the waiting times
on each direction. As this problem can be hard to solve, we decide to start
with the special case where λ = 1 meaning we want to optimize the global
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system of the two ways without being to the advantage of one specific direc-
tion.

Simplifications In order to give the problem a particular structure mak-
ing it easier to solve, we do not take into account in this part the incoming
and outgoing flows from the side streets. Then, the North way platoons
are (RN , 0), (θNc , ρc), (C − RN − θNc , ρ

N
f ) and the south way platoons are

(RS, 0), (θSc , ρc), (C − RS − θSc , ρSf ), where R is the duration of the red light,
θc the queue dissipation duration, and ρf the density of the third platoon
resulting from a previous merging between several platoons as explained in
the chapter 2. The N and S mean the parameters belong to the North or
the South way. A seventh parameter common to both sides is to be added
to the model, the travel time tt from one traffic light to the other. Assuming
all the vehicles move at the free flow speed vf , tt = L

vf
, with L the length of

the link between the two traffic lights.
As the previous problem, the set of solutions is discrete and the solution

depends on several conditions over all the parameters. In order to reduce the
degree of freedom of our problem and see some global cases where we can
actually say some generality, we decide to focus during a first time on the
case where the two ways are saturated. In this case, the two parameters ρf
do not matter anymore because the third platoon is no longer existent, and
we have the constraints θc = C − R on both sides meaning the queue takes
the entire green time to discharge. Then, we have only three parameters left
for this particular case.

4.2 Classification of the solutions

First observations After taking a look at some curves representing the
total amount of delay in random situations, we can see an interesting fact.
We get the minimum of the function on either tt or C−tt meaning optimizing
two ways is equivalent to optimize one way or another. The major difficulty
is now to choose which way to optimize in order to actually get the same
minimum as if we have two ways. Even though the minimum might be
reached somewhere else, it seems more likely to have the same minimum as
the one-way case.

Classification protocol To choose efficiently which way we have to opti-
mize, we decide to classify the different cases. We generate random possible
situations uniformly distributed and we plot them in a cut of the 3-D space
of all the possible situations. The color we use to plot them depends on the
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Γ

Θtt C − tt

Γ

Θtt C − tt

Figure 4.1: The blue curve is the delay of the north side, the green one is
the delay of the south and the red one the total. On the left RN = 17, RS =
32, tt = 14 and on the right RN = 25, RS = 6, tt = 26

way we have to optimize. As we want to compare the parameters of the two
ways, a natural cut to be used is the plane (RN , RS), tt being a parameter
common to both ways. As a result, for a given value of tt, we obtain the
following diagram in the figure 4.2.

RS

RN

I

Optimize North way

Optimize South way

Optimize either way

Figure 4.2: The blue + are the situations when we have to optimize the north
way, the green x for the south way and the black o when it doesn’t make any
difference to choose between the two. Here, tt = 15.

We can see in the figure 4.2 three distinct areas separated by straight
lines. We easily assume this bounds depend on tt, the last parameter, fixed
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in the previous diagram. Though, the diagram keeps its shape for different
values of tt. The coordinates of the point I in the middle are the only thing
changing with tt.

Equations of the frontiers We implemented a code using dichotomy to
find the coordinates of I automatically for different values of tt. In fact, the
code has just to seek the abscissa as I is always on the first bisectrix. Then,
on the figure 4.3 is the curve of the variations of this abscissa xI with tt.

xI

tt

Figure 4.3: The abscissa of the point in function of tt

4.3 Analysis of the results

We derive from this graph that I has (C − 2tt, C − 2tt) as coordinates. The
three areas in this case are now well-defined.

We derive from this diagram that the best choice to do is to optimize
the way with the longest red light duration. If we consider as an example
RS > RN , it means the platoon at critical density on the North way has a
duration C −RN longer than the green time C −RS. Thus, some vehicles of
this platoon must stop at the red light, whereas the situation is the opposite
for the other direction. The platoon of critical density on the South way has
a duration C − RS shorter than the green time C − RN , this platoon can
go through the intersection without any vehicle stopping. This platoon has
more freedom in the choice of this offset and the gap between the optimal
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offset and another offset has less influence than on the other direction in
which some vehicles must stop anyway. So, the optimal choice is to set the
offset with respect to the way equipped with the longest red time.

This case is the easiest one we can study for this general situation. A lot of
work is possible to improve the results. To add complexity to this problem, we
planned to study the effect of making one way out of the two undersaturated,
but two new parameters are to study then, the queue discharge duration and
the density of the third platoon for the undersaturated way. We could not
study it because we lack of time, but the primary results show us the areas
are worse-defined - the frontiers are not straight lines anymore - and the
optimization of the two ways is not equivalent to optimize only one way, but
sometimes both are to be taken into account. Once this work is done, several
intersections should be studied but, thanks to the similar structure of the
input and the output, the results should be derived quite easily.
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Chapter 5

Conclusion

This work is mainly an introduction to the model of the intersection which
can be considered as a system or a projection on a subset. This model
allows the traffic flow to be characterized by a small and finite amount of
parameters. Moreover, the study of several intersections one after another
is made easier by the similar structure of the input and the output of the
intersection.

This model, allows a analytical solution to the classic problem of the traf-
fic lights coordination. The limited number of parameters and the structure
of the traffic flow make the function representing the total waiting time of
the vehicles during a cycle quasi-convex and give the exact position of the
minimum of this function. As the model was built to fit in a study of several
consecutive intersections, the optimization of a single intersection was just a
step and gives very naturally a behaviour and jumping conditions from one
intersection to another.

This behaviour shows that the optimal offset to be implemented remains
the same after a few intersections and gives birth to a green wave. The green
wave being an intuitive way to optimize the offset with a several intersections,
it means the model is viable and gives results which make sense even though
the theory seems quite heavy compared to the results provided. Nevertheless,
the results are much more complete than just giving a green wave and could
be implemented in a real-time control system. Some sensors would measure
the outgoing flow of an intersection and would send these informations to
the downstream traffic light, giving him all the parameters to compute the
optimal offset. Such a system should be analysed more precisely before im-
plementation because it presents several issues. The investment for sensors
at each intersection could be huge as the computation time could be longer
than the flow travel time from one intersection to another.

This model is not limited to the one-way synchronization problem and
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could be applied to model the flow in a lot of arterial traffic situations. We
intend to study the two-ways case even though we finally got partial results
due to a lack of time. With these partial results, we manage to find that,
in a congested regime, optimizing one way is equivalent to optimize the way
getting the longer red light duration. This result does not hold when the
regime become undersaturated but gives some behaviour of the system which
can be adapted to further studies of the two-ways problem.

Apart from traffic lights synchronization, this model could be used in big-
ger projects such as travel time estimation along a urban road going through
several intersections. This problem is studied nowadays by transportation
laboratories in order to improve traffic management inside the cities and not
only on the highways.
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